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Abstract Telemetry transmitters incorporating acceler-
ometers have recently emerged as powerful tools for
investigating the activity patterns of individuals and
groups of individuals in nearshore environments. Data
obtained from these devices provide not only a time
series of animal occurrence at acoustic receivers, but
also a direct measure of animal activity, which can be
used to quantify trends in activity states over time and in
relation to exogenous factors. Here we used passive
acoustic accelerometry to examine trends in the activity
and swimming depth of eight juvenile sand tigers
(Carcharias taurus) in Plymouth, Kingston, Duxbury
(PKD) Bay, Massachusetts, USA, a recently identified
nursery area. We applied a novel geostatistical modeling
approach that accounts for both latent spatial and indi-
vidual variation to assess the effects of time of day, tidal

stage, water temperature, and lunar phase on activity
patterns at both a population- and individual-level. The
best-fitting model indicated that juvenile sand tigers
were more active and more likely to be detected at the
surface at night and during the new moon; water tem-
perature was also a predictor of surface activity. Collec-
tively, our results confirm conventional wisdom that
sand tigers are slow-moving fish that are more active
at night and provide evidence that high activity in PKD
Bay may be indicative of foraging activity.
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Introduction

Estuarine systems and shallow bays are dynamic areas
that provide critical habitat for many coastal shark spe-
cies (Knip et al. 2010). Studies investigating the spatial
ecology of individuals or groups of individuals in these
nearshore habitats often rely on location data collected
using passive acoustic telemetry (see Heupel et al. 2006
for a description of this technique) to describe horizontal
movements and space use in relation to environmental
factors (e.g., Ubeda et al. 2009; Simpfendorfer et al.
2011; reviewed by Schlaff et al. 2014). Behaviors and
activity patterns can sometimes be inferred based on
metrics derived from location estimates (Pedersen
et al. 2011; McKellar et al. 2015). However, studies
employing position-only telemetry transmitters often
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lack the context needed to quantify the behavioral and
physiological interactions underlying observed space
use, which is critical for understanding, interpreting,
and evaluating how species respond to changing envi-
ronmental conditions (Whitney et al. 2012).

Acoustic telemetry transmitters incorporating tri-axial
accelerometers have become an increasingly popular tool
for examining the activity patterns of coastal marine
species (O’Toole et al. 2010; Murchie et al. 2011; Barnett
et al. 2016). Detection data obtained from these devices
not only provide a time series of animal occurrence at
acoustic receivers, but also a direct measure of animal
activity (via changes in acceleration), which can be used
to quantify trends in activity states over time (Taylor et al.
2013; Stehfest et al. 2015; Kolarevic et al. 2016), associ-
ations with environmental conditions (Wilson et al. 2014;
Papastamatiou et al. 2015; Payne et al. 2016), and to infer
energy expenditure (Wilson et al. 2013; Brodie et al.
2016; Brownscombe et al. 2017). Unlike archival accel-
erometers, which record high resolution data on animal
activity over relatively brief periods (e.g., hours to weeks;
Gleiss et al. 2010; Whitney et al. 2010; Lear et al. 2016),
acoustic accelerometer transmitters typically provide
coarser-scale data (i.e., at transmission intervals of 1–
2 min) and have battery lives that are better suited for
monitoring activity patterns within areas of receiver cov-
erage over longer time periods (e.g., weeks to months;
Burnett et al. 2014). The ability to quantify long-term
activity patterns is particularly important when monitor-
ing tagged animals in dynamic nearshore areas, where
individual activity may be influenced by short- (e.g.,
tidal, diel; Whitney et al. 2007) and long-term (e.g.,
seasonal; Kneebone et al. 2012) physical and environ-
mental factors over a range of spatial scales. Given the
anthropogenic threats facing these ecologically sensitive
areas (McLusky and Elliott 2004), a more holistic under-
standing of animal activity in these environments is
important for management and conservation efforts
(Beck et al. 2001), particularly for areas that support
threatened or endangered species (Brownscombe et al.
2015; Gleiss et al. 2017).

The sand tiger (Carcharias taurus) is a large coastal
shark that ranges from the Gulf of Mexico to the Gulf of
Maine in the western North Atlantic Ocean (WNA;
Bigelow and Schroeder 1953). Within this broad area,
sand tigers occur in nearshore and offshore habitats,
with juveniles commonly inhabiting littoral areas such
as shallow inshore bays, estuaries, and river mouths
(Compagno 2001; Collette and Klein-MacPhee 2002;

Kneebone et al. 2012). In response to purported 80–90%
population declines in the 1980’s and 1990’s (Musick
et al. 1993; Castro et al. 1999; Musick et al. 2000),
managers prohibited the harvest of the species in both
U.S. federal (NMFS 1999) and state (ASMFC 2008)
waters. While the current status of the population in the
WNA remains uncertain (Carlson et al. 2009), the spe-
cies is listed as a ‘Species of Concern’ due to its excep-
tionally low biological productivity (Gilmore et al.
1983) and sensitivity to anthropogenic disturbance in
nearshore habitats (Carlson et al. 2009).

Recently, Plymouth, Kingston, Duxbury (PKD) Bay,
Massachusetts, USA, a tidal estuary located in the west-
ern Gulf of Maine, was identified as a seasonal nursery
area in which juvenile sand tigers remain resident for the
summer months (June – October) and exhibit strong site
fidelity to specific habitats on an intra- and inter-annual
basis (Kneebone et al. 2012). Due to its ecological im-
portance as a nursery area and susceptibility to anthropo-
genic disturbance, PKDBaywas designated as a juvenile
sand tiger Habitat Area of Particular Concern (HAPC) by
the National Oceanic and Atmospheric Administration
(NMFS 2017). Despite this distinction, little is known
about the fine-scale activity patterns of juvenile sand
tigers within this embayment, or in similar habitats
throughout the species’ global range. Given the impor-
tance of shark nursery areas to population recovery and
maintenance (Heithaus 2007; Heupel et al. 2007), de-
clines in the WNA sand tiger population, and the desig-
nation of PKDBay as a HAPC, a thorough assessment of
the activity patterns of juvenile sand tigers in this sensi-
tive coastal habitat is warranted. The objective of this
study was to use passive acoustic accelerometry to assess
the effects of physical and environmental factors on sand
tiger activity patterns in PKD Bay.

Materials and methods

Study site

PKD Bay is a relatively productive coastal embayment
located along the south shore of Massachusetts, USA
(Fig. 1). The system is highly tidal, experiencing semi-
diurnal tides with mean amplitudes of 3.2 m that result
in a 66.1% tidal exchange in water volume and fluctu-
ation in total surface area from 22.1 to 40.7 km2 at mean
low and mean high water, respectively (Iwanowicz et al.
1974). Bottom substrates in PKDBay consist of shallow
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eelgrass beds, sand flats that are exposed at low tide, and
deep (5–10 m) channels. Average overall depth ranges
from 2.1 to 3.3 m between mean low and mean high
water, respectively, with maximum depths of 20 m near
the mouth of the bay.

Shark capture and tagging

Juvenile sand tigers were captured in PKD Bay from a
small (6.1m) center console research vessel in July 2011
using conventional rod and reel tackle, circle hooks (size

8/0), and chunks of menhaden (Brevoortia tyrannus) for
bait. All sharks were captured, handled, and released in
accordance with Massachusetts Division of Marine
Fisheries regulations. Once each shark was landed, the
hook was removed (if possible), and tonic immobility
was induced by restraining the shark ventral side up
(Watsky and Gruber 1990) in a V-shaped table lined
with pre-wetted neoprene. Sharks were tagged with two
models of individually-coded 69 kHz Vemco acoustic
transmitters (model V9AP-2 L, nominal delay = 60–
180 s, battery life = 123 days; model V9AP-2H,

Fig. 1 Receiver deployment locations in Plymouth, Kingston,
Duxbury Bay. Receivers with temperature (red) and temperature

and light sensor loggers (green) are indicated. Map made using the
Bggmap^ library (Kahle and Wickham 2013) in R
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nominal delay = 60–180 s, battery life = 81 days; Vemco
Division, AMIRIX Systems Inc., Halifax, Nova Scotia)
containing tri-axial accelerometers (Measurement
Range: ±29.4 m s−2; Vector Range: 0.000–
3.463 m s−2) and pressure (i.e. depth) sensors (Range:
0.00–50.00 m; Accuracy: ±1.70m; Resolution: 0.08 m).
Both transmitter models measured acceleration on three
axes five times per second over a defined sampling
interval (V9AP-2 L: 54 s sampling interval; V9AP-2H:
57 s sampling interval) and transmitted the value that
represents the root mean square (RMS) acceleration
resulting from the contribution of each of the three axes
over that interval. The resulting RMS acceleration value
is intended as a general activity index of the body of a
fish, or overall dynamic body acceleration (ODBA).

Transmitters were implanted in the body cavity
through a small (2–3 cm) abdominal incision on the
ventral side of the shark along the midline, anterior to
the pelvic fins. Care was taken to ensure that transmit-
ters were oriented along the anterior-posterior axis of the
fish to reduce error and improve the signal-to-noise ratio
of the accelerometer output (Watanuki et al. 2003;
Gleiss et al. 2011). Incisions were closed with 3 or 4
interrupted sutures (2–0 PDS II, Ethicon Inc., NJ). Prior
to release, fork length (FL; cm) and sex were recorded
for each individual. All surgical procedures were com-
pleted within 5–10 min. All capture and sampling
methods conducted in this study were approved under
the University of Massachusetts Dartmouth Institutional
Animal Care and Use Committee Protocol Number 10–
01.

Receiver deployment and acoustic monitoring

To assess movement and activity patterns of juvenile
sand tigers within PKD Bay, a fixed array of 34 acoustic
receivers (model VR2W, Vemco Division, AMIRIX
Systems Inc., Halifax, Nova Scotia) was deployed from
June to October 2011 (Fig. 1; see Kneebone et al. 2012
for details). On average, the detection radius of receivers
ranged from ~100 m in water depths <3 m to ~350 m in
water depths >5 m (based on range tests conducted by
Kneebone et al. 2012). Receivers were downloaded and
cleaned monthly during each deployment period.

To monitor water temperature within PKD Bay
throughout the study period, 12 temperature loggers
(model HOBO Pendant, Onset Computer Corporation,
Onset, MA) were deployed on acoustic receiver moor-
ings (Fig. 1). All loggers were set to record temperature

(°C) every 30 min (on the half hour and hour) with an
accuracy of ±0.7 °C (Range: −20 – 70 °C). Five of these
temperature loggers also recorded light intensity
(Range: 0–320,000 lx) at the same interval (Fig. 1).

Accelerometer calibration

To investigate the relationship between raw acceleration
values and biologically-relevant activity states, calibra-
tion experiments were conducted using two juvenile
sand tigers measuring 82 cm (female; ST1108) and
97 cm (male; ST1115). During collection, both sharks
were hooked in the mouth and free of physical trauma.
Following capture, sharks were held in aerated onboard
coolers and transported to a 5700 L outdoor holding
tank at the Jones River Landing Environmental Heritage
Center in Kingston, MA; transport times for both sharks
were under 30 min. Dissolved oxygen, salinity, and
temperature levels were monitored during each experi-
mental trial with a water quality meter (model 85; YSI
Inc., Yellow Springs, OH) to ensure that the tank con-
ditions remained comparable to those in PKD Bay.

After a 48-h acclimation period, sharks were im-
planted with an accelerometer transmitter as described
above and given at least six hours to recover in the tank.
Following the recovery period, an omnidirectional hy-
drophone (Model: VH165; Vemco Division, AMIRIX
Systems Inc., Halifax, Nova Scotia) linked to a receiver
(Model: VR100; Vemco Division, AMIRIX Systems
Inc., Halifax, Nova Scotia) was used to record transmit-
ted ODBA values corresponding to three biological
activity states: resting, low activity, and high activity
(O’Toole et al. 2010; Murchie et al. 2011). These three
states were identified based on observations of juvenile
sand tiger behavior in the same holding tank during a
study investigating the physiological effects of capture
and post-release recovery (Kneebone et al. 2013).

ODBA values corresponding to periods when sharks
remained motionless (i.e., while buccal pumping) on the
bottom of the tank were classified as resting. Slow swim-
ming around the tank was classified as low activity; this
was the most common behavior observed in this tank
(Kneebone et al. 2013). During the early stages of the
calibration experiment, we observed that the accelerom-
eter sensor would log the maximum value after only one
burst lasting from 1 to 3 s (i.e., the transmitted accelera-
tion was always 3.463 m s−2 no matter how many bursts
were exhibited over the sampling interval). Therefore, to
document acceleration values corresponding to high
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activity, sharks were either: 1) chased until they burst
swam, or 2) chased continuously for the ~ 55 s sampling
interval if burst swimming did not occur. Treatment (2)
was performed to establish the acceleration values that
were representative of swimming at a faster pace than the
slow swimming commonly observed (i.e., the low activ-
ity state) for the duration or a portion of the transmitter
sampling interval. Data from each trial were pooled to
examine the range of acceleration values representative
of each activity level (Table 1). Both sharks were released
back into PKD Bay following the calibration experiment
and were monitored as part of the broader study.

Data processing and activity state classification

Prior to analysis, all transmitter data were examined
individually and false detections rejected using criteria
established by the tag manufacturer (Vemco; Pincock
2012). Detections collected within 24 h of release were
also excluded to account for aberrant behavioral chang-
es associated with the tagging process (O’Toole et al.
2010; Kneebone et al. 2013).

Rather than model ODBA values directly, each ac-
celeration detection was classified into one of two ac-
tivity states based on the results of the calibration exper-
iment. As described above, the calibration experiments
suggested that acceleration data could potentially be
divided into three states corresponding to resting, slow
swimming, and active/burst swimming behaviors. How-
ever, due to the low frequency of resting behavior in the
wild (see Results section) we had limited interest in
distinguishing between periods of resting and slow
swimming behaviors, and so chose to assume two ac-
tivity states: one corresponding to low activity (i.e.,
resting or slow swimming) and one corresponding to
more active movements that would be associated with
foraging or escape responses (hereafter referred to as

high activity). Because acceleration data are strictly
positive, accelerations corresponding to both the low
and high activity states were assumed to follow a gam-
ma distribution (Bolker 2008). Two separate gamma
distributions (parameterized in terms of shape and scale
parameters) were fitted to low and high activity obser-
vations from the calibration experiment and were used
as the basis for assigning each detected acceleration to
the most probable activity state.

Trends in vertical movements were also examined as
a second measure of activity. Tagging data obtained
from sand tigers indicates the species is primarily ben-
thic, spending the majority of its time at depth (Otway
and Ellis 2011; Smale et al. 2012; Kneebone et al. 2014;
Teter et al. 2015). However, movements to the surface
have been previously documented, including within
PKD Bay (Kneebone et al. 2014). Water depths in areas
of receiver coverage in PKD Bay were generally >1.5 m
(i.e., greater than one body length of the tagged sharks);
thus, we considered off-bottom movements to the sur-
face (depth < 0.50 m) as indicators of active swimming
and a reasonable secondary proxy for animal activity.
We ultimately chose to model the probability of a sur-
face detection rather than raw depth due to the complex
bathymetry and large tidal amplitude in PKD Bay,
which would influence raw depth measurements irre-
spective of animal activity.

Identifying trends in activity using geostatistical mixed
effects models

Our goal was to identify relationships between environ-
mental covariates and activity patterns of juvenile sand
tigers, and so we focused only on characterizing the
probability of high activity given that a tagged individ-
ual was detected (i.e. we do not include a model for the
probability of detection). We modeled the activity state

Table 1 Range of overall dynamic body acceleration values (m s−2) corresponding to three activity levels observed during two
accelerometer calibration experiments

Activity level ST1108 (82 cm female) ST1115 (97 cm male) Combined

Resting 0.041–0.054 (0.044 ± 0.006) 0.068–0.109 (0.089 ± 0.014) 0.041–0.109 (0.075 ± 0.026)

Low activity 0.217–0.557 (0.420 ± 0.123) 0.122–0.462 (0.235 ± 0.117) 0.122–0.557 (0.355 ± 0.149)

High activity 0.788–3.463 (1.557 ± 0.804) 1.101–3.463 (1.747 ± 0.732) 0.788–3.463(1.652 ± 0.752)

3.463 m s−2 is the maximum capibility of the V9AP acceleration sensor

Mean and standard deviation of the observed values are indicated in parentheses
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of each observed detection as the outcome of a Bernoulli
random variable (0 = low activity; 1 = high activity):

yi∼Bernoulli pið Þ ;
where pi is the probability that detection i corresponds to
the high activity state. The probability that a given
detection corresponds to high activity can be modeled
as a function of environmental covariates, as well as
individual- or receiver-specific covariates as:

logit pið Þ ¼ β0 þ βXi;

where β0 is an intercept term representing the mean
probability of a high activity detection, β represents the
vector of regression coefficients related to each included
covariate, andXi is a vector of covariates specific to each
detection. We discuss the rest of the analysis in terms of
activity states, but we used the same approach to identify
relationships between environmental drivers and the
probability that a logged detection occurred at the surface
(0 = below surface detection; 1 = surface detection).

To assess trends in activity related to environmental
covariates, we incorporated water temperature, hour of
the day, lunar phase, and tide stage as predictors of pi.
Water temperature for each acceleration detection was
assigned based on ambient conditions measured by the
data logger that was closest to the location of the detect-
ing receiver in both space and time. Lunar phase (i.e.
new, waxing, full, waning) was assigned using the ‘lu-
nar’ package (Lazaridis 2014) in R (RCore Team 2016).
Tide stage (i.e. ebb, low, flood, or high) was assigned to
each detected acceleration using data for PKD Bay
obtained from http://tbone.biol.sc.edu/tide/sites_
useastupper.html. Based on observations of tidal water
flow in PKD Bay (J. Kneebone, pers. obs.), high and
low tide were defined as the period encompassing 90
min before and after the timing of mean high and low
water, respectively. As defined, each tidal stage had an
approximately 3-h period. Covariates were screened for
multicollinearity prior to model fitting. The full linear
predictor for pi was specified as a function of environ-
mental covariates as:

logit pið Þ ¼ β0 þ β1Tempi þ β2Temp2i þ β3sin
2πhi
24

� �
þ

β4cos
2πhi
24

� �
þ β5;6;7Tidei þ β8;9;10Mooni;

where the intercept term, β0, corresponds to low tide and
the new moon; β1 and β2 to a quadratic effect of water
temperature (which allows for a non-linear relationship

with activity state); β3 and β4 to the trigonometric func-
tions for hour of the day, h; β5,6,7 to ebb, flood, and high
tide; and Β8,9,10 to waxing, full, and waning moon
phases, respectively.

The above formulation implies that the probability of
a high activity detection at a given receiver is indepen-
dent of those at all other receivers and is constant be-
tween individuals. Given variation in local conditions
that is not accounted for by the above covariates (e.g.,
depth, bottom type, prey densities), we expected that
trends in activity at a given receiver would be more
similar to those at neighboring receivers than those
located further apart (Winton et al. 2018). To allow for
spatial correlation between receivers, r, the above model
was extended using a Gaussian random field (GRF),Ω,
(Lindgren et al. 2011; Thorson et al. 2015, 2017):

logit pið Þ ¼ β0 þ βXi þΩ rið Þ;
Here Ω denotes the GRF allowing for spatial varia-

tion in the expected activity state, which we assumed
fol lows a mult ivar ia te normal dis t r ibut ion:
Ω∼MVN 0;σ2

ΩCd
� �

, where σ2
Ω is the marginal variance

of Ω. Cd is the spatial correlation function between
locations separated by a Euclidean distance of d (here
specified as a Matérn function with a smoothness
parameter, ν, equal to 1 and a scaling parameter, κ,
which was estimated following Lindgren et al. 2011).
These two terms represent the spatial covariance among
locations, which we assumed to be equal in both the
north-south and east-west directions (i.e., isotropic). The
correlation range (i.e. the distance at which observations
can be considered independent), ρ, was calculated as the
distance at which the correlation declines to approxi-

mately 10%, which was empirically derived as
ffiffiffi
8

p
=κ

following Lindgren et al. (2011).
Juvenile sand tigers exhibit site fidelity (Kneebone

et al. 2012), and so we also expected that the activity
states of an individual shark at a given receiver would be
more similar than those logged at the same receiver by a
different tagged individual. To account for autocorrela-
tion related to differences in the distribution of individ-
ual sharks, the above spatial model was extended with a
second GRF representing variation inΩ for each tagged
shark, s, denoted by Es:

logit pi;s
� � ¼ β0 þ βXiþΩ rið ÞþΕs rið Þ;

where, as forΩ, Es was assumed to follow a multivariate
normal distribution with mean zero and spatial covariance
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given by σ2
ECd. The abovemodel formulation implies that

the correlation distance was stationary and did not vary
between individuals. Here, Ω accounts for spatial corre-
lation common to all individuals that was not accounted
for by the included covariates, and Es represented differ-
ences in the spatial correlation structure between individ-
uals (Thorson et al. 2017); in statistical terms, Ω repre-
sents the marginal spatial correlation field integrated over
all individuals. In other words, individual variations were
represented as differences from the overall spatial field
(Ω), where the spatial random fields for individual sharks
were assumed to be independent.

Parameter estimation, spatial prediction, and model
selection

We treated variations in space and among individuals as
random effects, which were estimated using a stochastic
partial differential equation approximation to a Gaussian
random field (Lindgren et al. 2011). The approach ap-
proximates a continuous Gaussian field using a compu-
tationally efficient Gaussian Markov random field ap-
proximation, which is defined over the region of interest
on a triangulated mesh (Lindgren et al. 2011). To calcu-
late the mesh and the sparse matrices used for this
approximation, we used the R-INLA software
(Lindgren et al. 2011; Lindgren and Rue 2015). Receiv-
er locations were specified as the mesh nodes, and the
coastline was specified as the mesh boundary. Fixed
effects parameters were estimated via non-linear opti-
mization of the maximum marginal likelihood using the
R package Template Model Builder (Kristensen et al.
2016), which integrates across random effects using the
Laplace approximation. The estimated fixed and ran-
dom effects were then used to predict the distribution
and probability of surface or high activity throughout
the study area. We refer interested readers to Lindgren
et al. (2011), Lindgren and Rue (2015), Thorson et al.
(2015), and Kristensen et al. (2016) for further details
regarding the statistical theory, spatial approximation,
and computational approaches underlying the models
used. Code for fitting the models described will be made
available as part of the R package ‘TelemetrySpace’ on
the second author’s publicly available GitHub page
(https://github.com/meganwinton/TelemetrySpace).

Given the large number of detections available, we
used the Bayesian information criterion (BIC; Schwarz
1978) for model selection. When sample sizes are large,

use of the more commonly applied Akaike information
criterion (AIC; Akaike 1973) can result in overfitting
(Zhu et al. 2009). The BIC is a likelihood-based model
selection tool that is analogous to AIC but imposes a
larger penalty for the number of parameters included
and hence tends to result in a more parsimonious model
(Bolker 2008). The BIC was calculated as:

BIC ¼ −2*nLLþ k*ln nð Þ;
where nLL is the negative log likelihood, k is the number
of parameters, and n is the number of detections. Fixed
effects terms were retained in the model if their inclu-
sion resulted in lower BIC values. We used the selected
model to predict the residual spatial variation (i.e. the
variation not explained by the selected covariates) by
setting the coefficients for all fixed effects other than the
intercept term to zero (Thorson et al. 2017). Predicted
values for the latent spatial and individual random fields
were projected over PKD Bay using functions in the R-
INLA package (Lindgren and Rue 2015).

Results

The eight tagged juvenile sand tigers were moni-
tored in PKD Bay for periods of seven to 78 days
(47 ± 28 days; Mean ± SD; Table 2). Detection data
were obtained from all acoustic receivers except a
single receiver that was lost prior to the first
download period (Station 31; Table 3; Fig. 1).
Recorded ODBA values spanned the extent of the
acceleration sensor’s capabilities and the range of
values recorded during the calibration experiment
(Tables 1, 2; Fig. 2a). Six of the eight sharks
showed evidence of resting or stationary behavior
(ODBA ≤0.109 m s-2;; Table 1; Fig. 2a) at various
times during their monitoring periods, although the
overall frequency of these events was very low
(n = 73, 0.2%; Fig. 2a). Sharks were detected from
the surface (0 m) to depths of 21.10 m; the mean
depth of each shark ranged from 1.56–2.88 m
throughout the full monitoring period (Fig. 2b;
Table 2). Water temperature at the time and loca-
tion of all acoustic detections ranged from 12.40–
30.05 °C (19.97 ± 2.26 °C; Table 3).

The number of detections classified as high activity
or surface detections varied considerably among indi-
viduals as well as among receivers (Tables 2, 3). Based
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on the fitted gamma distributions (low activity: shape =
1.75, scale = 0.10; high activity: shape = 4.96, scale =
0.29; Fig. 3), 2487 of the 29,672 acceleration detections
(8.4%) were classified as high activity. A total of 1776
depth detections (6.0%) were classified as surface de-
tections (<0.50 m).

Trends in activity and surface detections

While the probability of a high activity or surface detec-
tion was relatively low overall, the selected models indi-
cated therewas a relationship between each activitymetric
and lunar phase and hour of the day (Table 4). The
estimated relationships suggested that juvenile sand tigers
were more active (as defined relative to the estimated
intercept value) at night between the hours of 15:00 and
02:00 and more likely to be detected at the surface be-
tween 17:00 and 04:00 h (Figs. 4, 5a). In comparison to
the reference condition (i.e. newmoon), the probability of
both a high activity or a surface detection was lower
during the other moon phases, and lowest during the
waning moon (Table 5). There was also evidence that
water temperature influenced the probability of a surface,
though not a high activity, detection, with surface detec-
tions more likely at higher temperatures (Fig. 5b).

The residual spatial fields for both selected models
indicated that the included covariates did not fully ex-
plain the observed variation, though the variability was
better explained in some regions than in others (Fig. 6).
High activity detections were more likely than predicted
by the included covariates near the mouth through the
southwestern side of the bay (near receivers 23–28 in
Fig. 1) and less likely in the northern regions of the bay,
which is predominantly shallow tidal marsh (Fig. 6a).
Surface detections were more likely than predicted from
the center into the western portion of the bay (near
receivers 19, 20, and 21 in Fig. 1) and less likely to
the north (Fig. 6b). While the probability of surface
detections was highest in the area that was most
frequented by tagged individuals (e.g., near receivers
20 and 21 in Fig. 1), high activity detections were most
likely at locations that weren’t often visited (Table 3).
The estimated spatial range for both models (Table 5)
implied that the spatial dependence between both high
activity and surface detections was approximately
3000 m, or roughly one-third the length and one-half
the width of PKD Bay. The predicted residual variation
suggested that unmeasured covariates influenced the
probability of both high activity and surface detections.T
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The patterns described above were consistent among
all eight tagged sharks, but the estimated variance of the
spatial random effects indicated greater variation in the
individual than the ‘overall’ spatial field for both activity

metrics (Table 5; Figs. 7, 8). In other words, some sharks
spent more time in the high activity state or near the
surface than others and vice-versa. For example, varia-
tion in the spatial fields of ST1113, ST115, and ST1116

Table 3 Summary of detection data obtained for acoustic transmitters from the array of 34 acoustic receivers deployed in Plymouth,
Kingston, Duxbury Bay in 2011

Station Acceleration detections Depth detections Temperature
range (°C)

Total Low
activity

High
activity

At
Depth

Surface

1 207 193 14 (7%) 190 15 (7%) 16–24 (19)

2 2258 2106 152 (7%) 2126 107 (5%) 13–28 (20)

3 3335 3118 217 (7%) 3171 113 (3%) 12–29 (20)

4 16 13 3 (19%) 17 1 (6%) 14–18 (17)

5 377 354 23 (6%) 406 4 (1%) 13–27 (21)

6 2062 1979 83 (4%) 1933 41 (2%) 13–25 (20)

7 4043 3843 200 (5%) 4009 79 (2%) 12–30 (20)

8 1790 1687 103 (6%) 1791 18 (1%) 12–29 (20)

9 480 463 17 (4%) 469 3 (1%) 13–28 (21)

10 2451 2363 88 (4%) 2373 72 (3%) 12–26 (20)

11 358 342 16 (4%) 355 0 (0%) 12–27 (21)

12 383 350 33 (9%) 388 11 (3%) 14–25 (21)

13 56 53 3 (5%) 56 1 (2%) 14–28 (18)

14 54 52 2 (4%) 44 2 (4%) 16–25 (20)

15 33 32 1 (3%) 27 0 (0%) 16–25 (19)

16 138 82 56 (41%) 146 0 (0%) 16–24 (18)

17 7 6 1 (14%) 9 0 (0%) 16–23 (18)

18 77 56 21 (27%) 93 0 (0%) 16–19 (17)

19 33 31 2 (6%) 24 1 (4%) 14–22 (18)

20 2773 2375 398
(14%)

2275 514
(18%)

13–27 (19)

21 2988 2699 289
(10%)

2555 408
(14%)

12–27 (20)

22 5081 4462 619
(12%)

4703 344 (7%) 12–29 (20)

23 438 351 87 (20%) 411 35 (8%) 13–25 (19)

24 68 28 40 (59%) 63 3 (5%) 16–28 (19)

25 16 14 2 (13%) 8 3 (27%) 16–25 (18)

26 6 3 3 (50%) 9 0 (0%) 17–24 (18)

27 17 13 4 (24%) 14 0 (0%) 13–23 (17)

28 5 5 0 (0%) 7 0 (0%) 17–23 (18)

29 33 30 3 (9%) 24 0 (0%) 14–24 (18)

30 64 61 3 (5%) 62 0 (0%) 13–26 (18)

31 Receiver lost: No data recovered

32 2 1 1 (50%) 2 0 (0%) 17–20 (18)

33 6 4 2 (33%) 6 0 (0%) 15–20 (17)

34 17 16 1 (6%) 13 1 (7%) 15–19 (17)

Percentages in parentheses represent the percent of total detections in that category. Mean temperature is presented in parentheses
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suggested that these individuals were more active than
the other tagged sharks over a broader area (Fig. 7).
Based on the individual spatial fields, most tagged
sharks (ST1108, ST1109, ST1112, ST1113, ST1114,
ST1115) were more likely to be detected at the surface
along the western edge of the bay. In contrast to the
other individuals, ST1111 logged more surface detec-
tions than expected in the middle of the bay, and ST1116
logged more along the northern edge of the bay (Fig. 8).

Discussion

In this study, we directly measured the activity of eight
juvenile sand tigers in a seasonal nursery area using

acoustic transmitters incorporating accelerometers. Ac-
celeration and depth data indicated that tagged sand
tigers spent most of their time at depth in the 'low'
activity state while in PKD Bay. This observation cor-
roborates previous general descriptions that sand tigers
are sluggish, slow-swimming, demersal fish
(Compagno 2001; Collette and Klein-MacPhee 2002),
as well as numerous underwater observations of activity
(e.g., Otway et al. 2003; Smith et al. 2015).

Descriptive accounts have commonly reported that
sand tigers are ‘more active’ (e.g., Pollard et al. 1996;
Compagno 2001; Collette and Klein-MacPhee 2002;
Smale 2005) and more willing to take baits (Bigelow
and Schroeder 1953) at night, which suggests that the
diel trends in high activity and surface detections

Fig. 2 Frequency histogram of
juvenile sand tiger (a)
acceleration (m s−2) and (b) depth
(m) data collected in Plymouth,
Kingston, Duxbury Bay. Note the
break in the y-axis in (a). Ten
depth observations from 7 to 22m
were recorded but are not
presented in (b) due to their
relatively low frequency of
occurrence
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Fig. 3 Histogram of overall
dynamic body acceleration and
observed activity states during the
transmitter calibration
experiment. The blue dashed line
corresponds to the estimated
gamma distribution for the low
activity state, and the red line to
that for the high activity state. The
fitted distributions were used as
the basis for assigning each
acceleration logged in PKD Bay
to the most probable activity state

Table 4 Relative goodness of fit for candidate models estimating the probability that a juvenile sand tiger detection corresponds to a high
activity or a surface detection

Fixed effects parameters k High Activity Surface

nLL BIC nLL BIC

β0 4 8545 17,132 6715 13,472
β0 + β5, 6, 7Tide 7 7906 15,883 5835 11,743
β0 + β8, 9, 10Moon 7 7889 15,851 5695 11,462
β0 + β1Temp 5 7909 15,869 5773 11,597
β0 + β1Temp + β2Temp

2 6 7903 15,867 5769 11,600

β0 þ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �
6 7872 15,806 5649 11,360

β0 + β5, 6, 7Tide + β8, 9, 10Moon 10 7882 15,867 5689 11,481
β0 + β1Temp + β2Temp

2 + β5, 6, 7Tide 9 7894 15,880 5763 11,618
β0 + β1Temp + β5, 6, 7Tide 8 7900 15,882 5767 11,616

β0 þ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �þ β5;6;7Tide 9 7865 15,823 5643 11,379

β0 + β1Temp + β2Temp
2 + β8, 9, 10Moon 9 7884 15,860 5600 11,293

β0 + β1Temp + β8, 9, 10Moon 8 7888 15,858 5608 11,299

β0 þ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �þ β8;9;10Moon 9 7851 15,794 5507 11,107

β0 þ β1Tempþ β2Temp2 þ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �
8 7858 15,798 5573 11,229

β0 þ β1Tempþ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �
7 7865 15,801 5576 11,224

β0 þ β1Tempþ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �þ β5;6;7Tide
10 7856 15,815 5569 11,242

β0 þ β1Tempþ β2Temp2 þ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �þ β5;6;7Tide
11 7849 15,812 5566 11,246

β0 + β1Temp + β5, 6, 7Tide + β8, 9, 10Moon 11 7880 15,873 5601 11,316
β0 + β1Temp + β2Temp

2 + β5, 6, 7Tide + β8, 9, 10Moon 12 7875 15,874 5593 11,310

β0 þ β1Tempþ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �þ β8;9;10Moon 10 7847 15,797 5410 10,924

β0 þ β1Tempþ β2Temp2 þ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �þ β8;9;10Moon 11 7842 15,797 5404 10,921

β0 þ β1Tempþ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �þ β5;6;7Tideþ β8;9;10Moon 13 7839 15,812 5401 10,936

β0 þ β1Tempþ β2Temp2 þ β3sin
2π*hour

24

� �þ β4cos
2π*hour

24

� �þ β5;6;7Tideþ β8;9;10Moon 14 7834 15,812 5394 10,933

Models are ranked from least to most complex. The best fitting model for each activity metric is indicated in bold. k: number of parameters
estimated, which includes three parameters corresponding to the spatial variance and correlation terms; nLL: negative log-likelihood; BIC:
Bayesian Information Criterion
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documented here may be related to foraging (Brewster
et al. 2018). This assertion of increased nighttime foraging
has also been inferred based on diel trends in short-term
active and passive acoustic telemetry data collected from
sand tigers off eastern Australia (Bruce et al. 2005).
Robbins et al. (2013) reported that therewas no significant
difference in the rate of bait depredation by sand tigers

throughout the day (i.e., over a 24 h period), thereby
suggesting that higher nighttime activity may be related
to the search for prey rather than the consumption of it.

Throughout their residency in PKD Bay, juvenile
sand tigers have been observed actively pursuing and
feeding on menhaden schools (Kneebone et al. 2012),
and shark movements and space use seem to be closely
associated with menhaden distribution (J. Kneebone
pers. obs). Thus, it is possible that the increased proba-
bility of high activity at less frequented locations (in
terms of both detecting receivers as well as temperature
and depth) was associated with short-term shifts in
menhaden distribution into these areas.While we cannot
rule out that a portion of the high activity detections
observed were due to startle responses (i.e., resulting
from environmental or anthropogenic disturbances), it
seems reasonable to assume that such responses would
occur rarely. Thus, the high activity state most likely
corresponds to foraging given our observations of shark
feeding activity in the bay.

In contrast to high activity detections, surface detec-
tions were more likely in a commonly-inhabited area
along the western edge of PKD Bay and occurred more
frequently at higher water temperatures (Figs. 5b, 6, 8).
During their seasonal residency, tagged sand tigers
spend the majority of their time in the western portion
of PKD Bay (e.g., near receiver 20; Fig. 1), an area that
is characterized by shallow (< 2.5 m), tidal flats that are

Fig. 4 Probability of a high activity detection in relation to hour of
the day based on the selected geostatistical mixed effects model.
Dashed lines indicate the 95% confidence intervals

Fig. 5 Probability of a surface detection in relation to hour of the day (a) and water temperature (b) based on the selected geostatistical
mixed effects model. Dashed lines indicate the 95% confidence intervals. Note that the y-axis scale varies between panels
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partially exposed at low tide and experience compara-
tively warm water temperatures (Table 3; Kneebone
et al. 2012). Due to the water depth in this area, less
vertical movement would be required to reach the sur-
face; therefore, one would expect to observe a relatively
high number of surface observations relative to other

deeper, colder locations. Shallow water depths near
receiver 25 (Fig. 1) also likely contributed to the higher
probability of surface detections in this area (Fig. 8).
However, tide stage was not a predictor of surface
detections, which suggests that these observations are
indicative of presence at the surface and not swimming

Table 5 Estimated parameters and standard errors from a geostatistical mixed effects model fitted to detection data from eight juvenile sand
tigers

Parameter High Activity Surface

Estimate S.E. Estimate S.E.

Intercept (β0) −2.13 0.40 −3.33 0.45

Linear effect of temperature (β1) – – 0.43 0.03

Quadratic effect of temperature (β2) – – −0.07 0.02

Sine component of daily trend (β3) 0.24 0.03 0.83 0.05

Cosine component of daily trend (β4) −0.15 0.03 −0.12 0.04

Waxing moon (β8) −0.08 0.06 −0.36 0.06

Full moon (β9) −0.28 0.06 −1.18 0.09

Waning moon (β10) −0.40 0.07 −1.21 0.08

Marginal spatial standard deviation (σΩ) 0.49 0.14 0.52 0.25

Marginal spatio-individual standard deviation (σE) 0.62 0.11 0.90 0.19

Spatial correlation range, ρ 3356 m 754 m 2659 m 743 m

Note that ρwas empirically derived as described in the text. Parameters follow those specified in the text. A dash indicates that the parameter
was not included in the selected model for the specified activity metric

Fig. 6 Residual variation in the probability of a high activity (a) or
surface detection (b) for eight tagged juvenile sand tigers. The
legend indicates the deviation from the mean predicted value at
each site on the logit scale. Green areas (values closest to 0)

indicate areas where the observed values alignwith those predicted
based on relationships with environmental covariates. Blue areas
are those with lower values than would be expected, and the red
regions are those with higher values
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in water depths <0.5 m, which could only occur within
the apparent receiver detection ranges at low tide.

Other environmental factors, such as light intensity
and substrate type, may also influence the diel activity
patterns observed in PKD Bay (Reebs 2002; Hamilton
et al. 2014). Unfortunately, detailed data on substrate
type were not available for PKD Bay, which precluded
our ability to examine its effect on sand tiger activity.
Light intensity data were available for some regions of
PKD Bay during the study period but were not included
in the model due to our inability to account for fine-scale
differences in light intensity throughout the receiver
array (i.e., in response to weather conditions, local water
depth, and local water turbidity). Regardless, light in-
tensity at-depth in PKD Bay was generally highest
during the mid-day hours (J. Kneebone, unpublished
data) when the probability of high activity and surface
detections were lowest. The potential influence of light
on diel activity is further supported by the finding that
the highest probability of high activity occurred during
the new moon, a period characterized by no or low
moonlight. This suggests that juvenile sand tigers may
hunt more effectively in low ambient light, a scenario

that has been hypothesized for other aquatic species
(Weltz et al. 2013; Gleiss et al. 2017).

It is important to note that our interpretation of juve-
nile sand tiger activity patterns is constrained by our
classification scheme. We were interested in using
ODBA as a proxy for juvenile sand tiger activity, and
so imposed two activity states based on the results of the
calibration experiment. This type of calibration approach
has been used previously to link raw acceleration data to
biologically-relevant behaviors/activity states (O’Toole
et al. 2010; Murchie et al. 2011). It is possible that tank
space constraints impacted the resulting distributions and
classification of high activity detections during the cali-
bration experiment, but the activity state-dependent dis-
tributions estimated from the calibration data did mirror
the distribution of detections observed in the wild. Fur-
thermore, given the low degree of overlap between the
distributions for low and high activity states, the potential
for gross misclassification of activity state seems low. In
addition, it is possible that some of the surface detections
occurredwhen individuals surfaced to swallow air, which
is a behavior known to occur in sand tigers (Compagno
2001), albeit at an unknown frequency.

Fig. 7 Individual residual variation in the probability of a high
activity detection for eight tagged juvenile sand tigers. The legend
indicates the deviation from the mean predicted value at each site
on the logit scale. Green areas (values closest to 0) indicate areas

where the observed values align with those predicted based on
relationships with environmental covariates. Blue areas are those
with lower values than would be expected and red are those with
higher values
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Similarly, the two activity states do not necessarily
reflect the species’ biology adequately or may reflect the
biological reality of some individuals better than others.
While there was only a 26 cm difference between the
smallest and largest tagged individuals, it is plausible
that shark activity patterns could be related to size. The
calibration experiments were conducted using two indi-
viduals of similar size to other tagged individuals, but
there was a large degree of individual variation in values
logged in the field. By fitting our model with random
effects for individual sharks, we were able to describe
patterns of activity common to multiple individuals
(McKellar et al. 2015). A more mechanistic understand-
ing of the individual differences observed here (e.g.,
differences in acceleration related to size) would require
a greater sample size but would potentially allow for
better determination of activity states.

Given the ephemeral nature of feeding and other
activities, it is likely that a large fraction of high activity
events exhibited in PKD Bay were not recorded due to
accelerometer transmission rates (which alternated be-
tween acceleration and depth and only transmitted every
60 to 90 s even when within range of a receiver). It is

also possible that the volume of data missing due to time
periods when sharks were not within range of a
receiver may have biased our results (Payne et al.
2010). Detection efficiency control experiments con-
ducted in PKD Bay determined that detection ranges
did not vary substantially during the time period
monitored (J. Kneebone, unpubl. data), but the array
did not provide full coverage of the bay. Future
studies should seek to extend the models used here
with a component explicitly accounting for variation
in the detection process to address this potential
source of bias (Pedersen and Weng 2013).

By applying a novel geostatistical modeling ap-
proach, we were able to quantify the influence of phys-
ical and environmental factors on juvenile sand tiger
activity patterns at both a population- and individual-
level. Unlike non-spatial generalized linear modeling
approaches, which are commonly applied to infer rela-
tionships between acoustic detection data and environ-
mental covariates (e.g., Simpfendorfer et al. 2011;
Henderson et al. 2014), the models applied here account
for the influence of unmeasured habitat variables via
inclusion of spatial random effects, which act as an

Fig. 8 Individual residual variation in the probability of a surface
detection for eight tagged juvenile sand tigers. The legend indi-
cates the deviation from the mean predicted value at each site on
the logit scale. Green areas (values closest to 0) indicate areas

where the observed values align with those predicted based on
relationships with environmental covariates. Blue areas are those
with lower values than would be expected and red are those with
higher values
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Bumbrella^ term for spatially-varying covariates that are
not included explicitly in the model structure (Thorson
et al. 2017; Winton et al. 2018). In general, our model
results corroborate previous descriptions of sand tiger
activity patterns; however, the included covariates did
not fully account for the observed variation in high
activity and surface detections. While accelerometer
transmitters cannot document the exact behavior of
tagged animals in the wild, the geostatistical modelling
approach provided a tool to better understand potential
mechanisms underlying the observed variation, which
would not have been apparent if analyzed in a non-
spatial framework. Additional research is necessary to
evaluate the activity patterns of sub-adult and adult sand
tigers in other regions to determine if they exhibit sim-
ilar activity patterns to juveniles within PKDBay. None-
theless, the trends in activity identified here may have
implications for managing bycatch of this species in the
U.S. Atlantic and beyond.
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