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Abstract
1.	 Acoustic telemetry is a popular tool for long-term tracking of aquatic animals to 

describe and quantify patterns of movement, space use, and diverse ecological 
interactions. Acoustic receivers are imperfect sampling instruments, and their de-
tection range (DR; the area surrounding the receiver in which tag transmissions 
can be detected) often varies dramatically over space and time due to dynamic 
environmental conditions. Therefore, it is prudent to quantify and account for 
variation in DR to prevent telemetry system performance from confounding the 
understanding of real patterns in animal space use. However, acoustic receiver 
DR consists of a complex, dynamic, three-dimensional area that is challenging to 
quantify.

2.	 Although quantifying the absolute DR of all receivers is infeasible in the context 
of most acoustic telemetry studies, we outline a practical approach to quantify 
relative variation among receiver DR over space and time. This approach involves 
selecting a set of sentinel receivers to monitor drivers of variation in detection 
range. Each sentinel receiver is subject to a range testing procedure to estimate 
detection efficiency (DE; the proportion of total transmissions detected by the 
receiver), at a range of distances from the receiver, to derive the maximum range 
(MR; distance from the receiver where DE is 5%) and Midpoint (distance from the 
receiver where DE is 50%). A reference transmitter is then placed at the Midpoint, 
providing a standardized measure of long-term variation in DE, with each station 
having similar freedom of variance. Variation in reference tag DE is then combined 
with MR to calculate a DR correction factor (DRc). A modelling approach is then 
used to estimate DRc for all receivers in the array at spatial and temporal scales of 
ecological interest, which can be used to correct animal detection data in various 
ways.
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1  | INTRODUC TION

Passive acoustic telemetry arrays have become one of the most 
popular approaches for quantifying the spatial, behavioural, and 
physiological ecology of aquatic animals (Cooke et al., 2016, 2004; 
Donaldson et al., 2014; Hussey et al., 2015). This tracking technique 
involves tagging animals with acoustic transmitters that periodi-
cally emit acoustic signals with unique identification codes (tag IDs), 
which are detected by acoustic receivers placed throughout the 
study area (or roving on autonomous vehicles or even other animals) 
to continuously monitor for tag transmissions. In studies to date, re-
ceivers are usually configured in one of two ways: at fixed locations 
within a study area where they function as non-overlapping nodes 
in a broad-scale telemetry array (Brownscombe, Lédée, et al., 2019; 
Heupel, Semmens, & Hobday, 2006), or in closer proximity with 
overlapping detection ranges to enable high-resolution estimates of 
animal positions (up to sub-meter accuracy in some cases; Cooke et 
al., 2005; Espinoza, Farrugia, Webber, Smith, & Lowe, 2011).

For acoustic telemetry systems to function effectively, the trans-
missions emitted from animal-borne tags must travel through the 
water uninterrupted so the unique tag ID can be fully decoded by 
one or more receivers. However, acoustic transmissions are routinely 
attenuated, refracted, or lost due to spreading in water (Singh et al., 
2009), disrupted by physical barriers, and/or muted by environmen-
tal or biological noise prior to reaching receivers (Kessel et al., 2014). 
False detections (i.e. erroneous or incorrect tag IDs) can also occur 
when tag IDs become mutated by noise but are still decoded by the 
receiver, or by code collision when transmissions from multiple tags, 
operating on the same frequency, arrive simultaneously at a receiver 
(Simpfendorfer et al., 2015). For these reasons, passive acoustic te-
lemetry arrays are imperfect sampling systems which, depending on 
the physical and environmental conditions in which they are placed, 
vary in their ability to accurately detect tagged animals in time and 
space (Kessel et al., 2014; Mathies, Ogburn, McFall, & Fangman, 
2014). If not accounted for, variation in system performance has 
the potential to cause erroneous conclusions regarding animal dis-
tribution and behaviour. For example, Payne, Gillanders, Webber, 
and Semmens (2010) demonstrated how diel patterns in cuttlefish 
Sepia apama space use could have been grossly misinterpreted with-
out correcting for diel variation in the performance of the tracking 

system. In that case, raw acoustic detections suggested cuttlefish 
utilized a nearshore area most often during daylight hours, but after 
correcting for acoustic receiver detection efficiency, the data sug-
gested cuttlefish were present more often at night. This example 
demonstrates the saliency of correcting for acoustic receiver per-
formance to reveal true patterns in animal spatial-temporal ecology.

Many studies have explored the factors that influence the ability 
of acoustic receivers to detect acoustic transmitters, with some in-
terchangeable use of the terms ‘detection range’ (DR), ‘detection ef-
ficiency’ (DE), ‘detection probability’, and ‘system performance’ (see 
Gjelland & Hedger, 2013; Huveneers et al., 2016; Kessel et al., 2014; 
Mathies et al., 2014; Simpfendorfer, Heupel, & Collins, 2008). Kessel 
et al. (2014) define DR as ‘the relationship between detection proba-
bility and the distance between the receiver and tag’. Alternatively, DR 
can be considered the three-dimensional area surrounding an acoustic 
receiver in which tag transmissions can be effectively detected by the 
receiver (see Table 1 for definition of terms). The size and shape of DR 
varies amongst receivers, as well as over time, due to dynamic envi-
ronmental conditions that influence the efficacy of signal transmission 
(see Kessel et al., 2014; Loher, Webster, & Carlile, 2017; Selby et al., 
2016 for examples). Quantifying absolute DR of all receivers in a te-
lemetry system (i.e. system performance) would therefore require ex-
tensive reference tag deployments (i.e. stationary transmitters placed 
in proximity of receivers) at a range of distances in three dimensions 
around every receiver, which is infeasible for most telemetry studies. 
The time, financial commitment, and computational effort needed 
to quantify variation in and among DRs may be why the majority of 
telemetry studies to date have failed to account for it (Kessel et al., 
2014). Fine-scale tracking systems typically require ‘synchronization 
tags’ to function, which also provide reference data that can be used 
to correct for system performance (e.g. Binder, Holbrook, Hayden, 
& Krueger, 2016; Brownscombe, Griffin, et al., 2019). Within broad-
scale telemetry arrays, many studies have used reference tags at set 
distances from receivers to explore the environmental factors that 
influence DR (see Kessel et al., 2014 and references therein) with a 
particular focus on its relevance to array design (Reubens et al., 2018; 
Selby et al., 2016; Stocks, Gray, & Taylor, 2014). In one of the most 
extensive applications to date, Selby et al., (2016) used a combination 
of range testing procedures for a short time period to predict detec-
tion probability across an acoustic array. However, few studies to date 

3.	 We demonstrate this method with a hypothetical dataset, as well as empirical data from 
an acoustic telemetry array to delineate spatio-temporal patterns of fish habitat use.

4.	 This is a flexible and practical approach to account for variation in acoustic receiver 
performance, allowing more accurate spatial and temporal patterns in aquatic ani-
mal spatial ecology to be revealed.
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have quantified long-term variations in DR over the course of a study 
and applied these measures to separate system performance from 
patterns in animal spatial ecology.

Currently, there is no standardized protocol to quantify and cor-
rect for the variation in acoustic telemetry system performance, 
despite the fact that it could severely bias study findings if not 
accounted for, especially in studies focused on spatio-temporal 
aspects of animal ecology. There has been a rapid increase in acous-
tic telemetry studies in recent years (Hussey et al., 2015), and this 
issue is relevant to many of these studies but is rarely addressed. 
Although quantifying absolute DR for all receivers within an acoustic 
telemetry system is ideal, it is impractical for most studies due to 
logistical constraints (i.e. time and money), which is likely why it is 
rarely accomplished. Instead, a relative measure of system perfor-
mance could serve to correct animal detection data over ecological 
(spatial and temporal) scales of interest. Here, we present a practical 
approach to generate a relative measure of telemetry system perfor-
mance and apply this measure as a correction factor to reveal more 
accurate patterns in animal ecology. The general approach we pro-
pose could be followed with a number of variations that we describe 
here, with more extensive sampling approaches being more ideal and 
less prone to error, balanced with the realities of conducting track-
ing studies. It is our hope that this approach will be accessible for 
researchers and become a routine method for system performance 
correction that will improve the reliability of findings from aquatic 
animal telemetry studies.

2  | MATERIAL S AND METHODS

2.1 | An approach to quantify and correct for 
system performance

Our conceptual approach for quantifying and accounting for varia-
tion in acoustic receiver DR and correcting animal detection data is 
outlined in Figure 1; R code and sample data for implementing these 
analyses are included in Supporting Information I. Recognizing that 
it is impractical for most telemetry studies to quantify variation in 
the size and shape of the three-dimensional DR of every receiver 
within an acoustic array, our approach involves the analysis of a 
subset of ‘sentinel receivers’, at which variation in detection ranges 
are monitored. These receivers must capture the range of environ-
mental and physical conditions present in the system (e.g. different 
water depths, substrate types, regions, and locales that may experi-
ence varied effects of temporal factors such as wind) because data 
from these sites will be used to predict DR correction factors (DRc; 
Table 1) at additional receiver sites in the array. If the sentinel receiv-
ers are not representative of the system, the predictions have the 
potential to be biased. At each sentinel receiver, DRc is estimated 
in a two-step process, involving (1) a range testing procedure to es-
timate maximum detection range (MR; i.e. the distance where DE is 
estimated at 5%; Table 1) and Midpoint (i.e. the distance where DE 
is 50%), and (2) placing a reference transmitter in proximity to sen-
tinel receivers at the Midpoint to characterize variation in DE over 

Variable Acronym Definition

Detection range DR Three-dimensional spatial region surrounding an 
acoustic receiver in which transmitters can be 
detected

Detection efficiency DE The number of acoustic transmitter detections 
effectively logged by an acoustic receiver in a 
given time period, expressed as a percentage (or 
proportion) of total potential detections based 
on transmission rate

Maximum detection 
range

MR Maximum distance from an acoustic receiver in 
which transmitters can be detected (5% DE), 
estimated via range testing

Detection efficiency 
variance

DEv Difference between detection efficiency in a 
given time period and the mean detection effi-
ciency of a reference tag by an acoustic receiver; 
Equation 1

Corrected detection ef-
ficiency variance

DEvc DEv standardized to ±50%; Equation 2

Midpoint Midpoint Estimated distance from an acoustic receiver 
where mean detection efficiency is 50%

Detection range correc-
tion factor

DRc Detection range correction factor derived from 
MR and DEv or DEvc; Equation 3

Animal tag detections Det The number of detections from animal-borne 
acoustic transmitters

Corrected animal 
detections

Detc The number of detections from animal-borne 
acoustic transmitters corrected using DRc; 
Equation 4

TA B L E  1   Variables relevant to 
quantifying acoustic receiver performance 
and correcting animal detection data using 
passive acoustic telemetry systems
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the course of the entire study period. These two measures are then 
combined to derive DRc (Figure 1). Stage (1) can be accomplished 
either by placing a range testing transmitter (i.e. one emitting regular 
transmissions at relatively short intervals, often 10 s) at a range of 
distances from the receiver for short periods (i.e. minutes to hours) 
off the side of a boat, or by placing stationary (moored to the ben-
thos) transmitters for longer periods (i.e. days to weeks; see Kessel 
et al., 2014 for review of approaches). Importantly, acoustic trans-
mitters often have a burst period (the period of time that the tag is 
transmitting the acoustic signal; e.g. ~3 s with Vemco range testing 
tags), which must be accounted for when calculating the expected 
number of detections within a given period (e.g. below, range test-
ing tags had a delay of 7 s, with a burst period of 3 s – transmissions 
are expected every 10  s). These data are then used to model the 

relationship between the distance from the receiver and DE to pre-
dict MR and Midpoint. Based on this information, in stage (2) a refer-
ence transmitter (i.e. one with a relatively long transmission delay, 
often 200–700 s) is stationed at the Midpoint for the entire study 
period. By placing the reference tag at the Midpoint, each reference 
tag has a similar freedom of variance (i.e. ±50%) from the mean DE 
at each sentinel receiver, which is important for further calculations 
used to correct animal detection data.

Variation in DE from reference tags (DEv) is  calculated at any 
timescale of interest (e.g. hourly) by subtracting the DE for that time 
period (t) from the overall mean detection efficiency for each sentinel 
receiver (r) over the entire study period (μr) using Equation 1. In some 
cases, as below in our application, μr may deviate from 50% amongst 
receivers. In this case DEvc can be calculated using Equation 2 to 

F I G U R E  1   Conceptual diagram outlining an approach to quantify variation in acoustic receiver detection range (DR) to correct animal 
detections, separating the performance of the acoustic receiver system from patterns in animal spatial ecology. On the left, yellow 
circles illustrate acoustic receivers, red circles sentinel tag sites, blue circles range testing locations, and the green circle a reference tag. 
DE = detection efficiency; MR = maximum range; DEv = detection efficiency variance; DRc = detection range correction factor
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scale the variability to ±50%. DR and DEv (or DEvc) are then used to 
calculate a detection range correction factor (DRc) using Equation 3. 
R code for these calculations is included in Supporting Information I.

DRc therefore integrates the initial estimate of MR with varia-
tions in DE over time to capture temporal variations in the perfor-
mance of each sentinel receiver. Although DRc does not represent 
variability in absolute DR over time, it serves as a relative measure 
of performance amongst sentinel receivers. To generate an estimate 
of DRc for all receivers in a telemetry array, estimates of DRc from 
sentinel tag receivers must be used to predict DRc at all receivers in 
the array. This could be accomplished using various modelling ap-
proaches such as multivariate frequentist statistics, Bayesian infer-
ence, or, as used below, machine learning.

DRc can be applied to animal detections across an array of 
acoustic receivers in a variety of ways. Researchers are commonly 
interested in presence/absence of tagged animals, in which case 
DRc could be integrated into detection probability estimates with 
mark-recapture models (Amstrup, McDonald, & Manly, 2006; 
Whoriskey et al., 2019), occupancy models (MacKenzie et al., 2002; 
Tyre, Tenhumberg, Field, Niejalke, & Possingham, 2013), or inte-
grated as fixed or random effects in Generalized Linear or Additive 
Mixed Effects models (Zuur, Ieno, Walker, Saveliev, Smith, & Ebooks 
Corporation, 2009) or Bayesian models (Zuur, Ieno, Anatoly, & 
Saveliev, 2017). DRc could also be used to generate more accu-
rate estimates of animal spatial positions using state space models 
(Dorazio & Price, 2018; Pedersen & Weng, 2013). In simpler applica-
tions, researchers are interested in the number of animal detections 
over space and/or time. For example, Payne et al. (2010) used de-
tection efficiency of reference tags to correct diel patterns in animal 
detection numbers. Here, we provide a simple example application 
of DRc to the number of animal detections (Det) amongst receivers 
(r) and time (t) with Equation 4 to derive the corrected number of an-
imal detections (Detc), where μ is the overall mean DRc of the system.

To illustrate how this approach performs, it is applied here to both a 
generated hypothetical dataset, as well as empirical telemetry data 
from a study of permit Trachinotus falcatus in the Florida Keys.

2.2 | Application to a hypothetical dataset

All analyses were conducted using R (R Core Team, 2018) via RStudio 
(RStudio Team, 2016). Our first analysis was applied to a hypotheti-
cal dataset generated with 1,000 data points, in which MR varied 
randomly between 50 to 500  m, DEv between −50 to +50%, and 
Det between 0 and 10. The relationship between MR, DEv, and DRc 
were plotted to illustrate how DRc is derived, and the relationship 
between Det and Detc were plotted to illustrate the level of variabil-
ity that can occur between these metrics using this approach. This 
exercise did not address sentinel site selection, or DRc modelling and 
prediction to non-sentinel receivers, which is conducted below with 
a real-world telemetry dataset.

2.3 | Empirical telemetry data

An array of 60 acoustic receivers (Vemco VR2W and VR2Tx; Vemco 
Inc.) was established in nearshore shallow waters of the Florida Keys 
in August 2015, with additional receivers added over time for a total 
of 89 by May 2018. Acoustic receivers were moored to the substrate 
with 30  kg cement bases and suspended 1  m off the substrate via 
attachment to a rebar post. This array was established to track the 
movement patterns of permit, Atlantic tarpon Megalops atlanticus (see 
Griffin et al., 2018), and bonefish Albula vulpes in proximity to shallow 
water ‘flats’ habitats (i.e. <3 m water depth nearshore habitats). A total 
of 113 permits were surgically implanted with acoustic transmitters 
(Vemco V13, V13A, V16, 60–120 s transmission delay). Although not 
explored here, researchers should be aware that different tag types 
have varied transmission power outputs (e.g. Vemco V16 is higher than 
V13). If inter-individual variability in space use is of interest amongst 
individuals with different tag types, higher power tags are likely more 
detectable. To test the detection range correction method, a subset 
of receivers was selected from this array (see spatial configuration in 
Supporting Information II, Figure S1).

Physical and environmental attributes were measured at all 
acoustic receiver stations, including water depth, benthos type, 
benthic rugosity, and habitat type. Water depth was measured using 
a depth sounder (Garmin EchoMap Plus 44cv; Garmin). Benthos 
type was assessed visually within a 100 m2 area around the receiver, 
including the biotic and abiotic conditions, and the predominant 
bottom cover type (i.e. seagrass, sand). Benthic rugosity was also vi-
sually estimated by a snorkeler while level with the benthos; it was 
scored from 1 to 3, with 1 representing little to no benthic struc-
ture (<50 cm variation in benthos height), 2 representing a moder-
ate amount variation (50–100 cm), and 3 a large amount of variation 
(>100  cm). Variation was caused by the presence of coral heads, 
sponges, or seagrass beds. Habitat type was visually assessed using 
satellite imagery via Google Earth (https​://www.google.com/earth/​
). Banks were considered to be on the outer edge of the flats, sloping 
off into either the Atlantic Ocean or Gulf of Mexico. Channels were 
narrow deeper-water cuts in the flats where tidal water flows more 
rapidly compared to surrounding areas. Basins were deeper-water 

(1)DEvr,t=DEr,t−�r

(2)
DEr,t−𝜇r<0⇔DEvcr,t=

DEr,t−𝜇r

𝜇r
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areas in the interior of the flats, separated by flats and/or mangrove 
keys from the ocean. All site characteristic estimates were con-
ducted by the same researcher.

2.4 | Application to permit ecology in the 
Florida Keys

Within the Florida Keys acoustic receiver array, a subset (n  =  9) of 
sentinel receiver sites was chosen to represent the range of condi-
tions present. Receivers were stratified into bank, basin, and channel 
habitats (n = 3 in each) and sites were selected across a range of water 
depths and bottom types (Table 2). The two-stage approach described 
above was then applied. Firstly, from 2 to 3 August 2016, a range 
testing protocol was conducted at each sentinel receiver, in which an 
acoustic transmitter (Vemco V13, 7 s transmission delay plus 3 s burst 
period) was placed 1 m below the water surface from a stationary boat 
for 2 min at a range of distances from the receiver. Distance incre-
ments from the receivers were varied from 50 to 100 m depending on 
the projected range (i.e. low rugosity sand banks were correctly pre-
dicted to have greater ranges than rugose channels and basins), with a 
minimum of three sites at each station. These data were used to derive 
DE at each distance, as well as MR and Midpoint distance. Importantly, 
this short-term range testing procedure was conducted in near-op-
timal detection efficiency conditions, i.e. on calm days with minimal 
wind and at high tide, with minimal water flow. With more time and 
resources, researchers may consider placing range testing tags at set 
distances from each sentinel receiver for longer periods (i.e. days to 
weeks) at the outset of the study to acquire a more robust measure 
of MR and Midpoint. Secondly, range testing findings were used to 
guide the placement location of a single reference tag (Vemco V13; 
270–330 s transmission delay) in proximity to each sentinel receiver at 
the Midpoint, which was unique for each receiver. Reference tag data 
reported here spanned from 13-June-2018 to 6-August-2018.

To estimate MR and Midpoint for each sentinel receiver using 
range testing data, firstly, DE was calculated as the percentage of 
total potential detections (i.e. 12 in 2 min) recorded by the receiver 
at each location the range testing tag was placed, expressed as the 

distance of tag location from the receiver. Third-order polynomial 
regression models were used to describe the relationship between 
distance from the receiver and DE at each receiver separately (R code 
included in Supporting Information I). These models were used to 
predict MR (5% DE) and Midpoint (50% DE) for each sentinel receiver.

To assess variations in DR that occur over time due to variability in 
conditions that affect receiver detection performance, reference tag 
data were used to generate estimates of DE over time to serve as a 
proxy. For each study hour, DEvc was calculated for each sentinel re-
ceiver over the entire study period (13-June-2018 to 6-August-2018) 
using Equation 2. MR and DEvc were then used to calculate DRc using 
Equation 3. To estimate DRc at a subset of receivers (n = 20 for illustra-
tive purposes), DRc from sentinel receiver data was fit with a random 
forests machine learning algorithm (Breiman, 2001) implemented with 
the randomForest r package (Liaw & Wiener, 2002). Random forests 
are a decision tree model, which uses predictor variables to create 
binary partitions in the data to optimize prediction of the response 
(Breiman, Friedman, Stone, & Olshen, 1984; De'Ath & Fabricius, 2000). 
These models are robust to many traditional statistical assumptions, 
integrate high-order interactions in the predictors, and are capable of 
making highly accurate predictions of the response variable. Random 
forests fit numerous (often 1,000+) decision trees with subsets of the 
data via bootstrapping with random feature selection, and aggregate 
the trees via bagging to reduce data overfitting and improve prediction 
accuracy (Breiman, 2001). Both random forests and a class of similar 
models, boosted regression trees, are growing in popularity in ecology 
research due to their ability to model diverse, complex data sets and 
make highly accurate predictions (Cutler et al., 2007; Elith, Leathwick, 
& Hastie, 2008).

Random forests was used to model DRc with predictors including 
site characteristics (water depth, benthos type, benthos rugosity, and 
habitat type) and temporal conditions (diel period, tide state, and tide 
height). Because the range testing and reference tag data were derived 
from an ongoing study, while transmitters were deployed in fish, the 
presence of other transmitters in the system may also impact receiver 
detection efficiency with Vemco acoustic receivers because they uti-
lize a single detection frequency, blocking out detections during the 
reception period, and code collisions can also occur. Other transmitters, 

TA B L E  2   Reference transmitter location characteristics at sentinel receiver sites in the Florida Keys acoustic telemetry array. 
MR = maximum detection range (5% detection efficiency) and Midpoint = location where detection efficiency is 50%, estimated with a range 
testing procedure

Station MR (m) Midpoint (m) Depth (m) Habitat type Benthos Rugosity score

BTT27 365 295 2.7 Bank Sand 1

BTT17 349 282 3 Bank Sand 1

BTT37 220 177 3 Bank Seagrass 3

BTT7 144 116 1.6 Basin Seagrass 2

BTT46 196 158 2 Basin Seagrass 1

BTT13 180 145 2.8 Basin Seagrass 3

BTT18 96 78 2.1 Channel Sand 2

BTT49 95 77 3 Channel Seagrass 3

BTT54 451 364 3.4 Channel Sand 1
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presumably deployed on marine animals (including those tagged within 
our study and those tagged by other researchers that moved into our 
system) were not present at sentinel receivers during range testing but 
were present intermittently throughout the reference tag deployment 
period (see Supporting Information II; Figure S2). Animal detections 
were considered rare enough to have a minimal impact on detection 
efficiency of reference tags in this study, but should be considered in 
other systems, and could be accounted for by including other trans-
mitter detections as a predictor of DRc. The random forests model was 
run with 1,000 iterations and an out-of-bag (non-training) sample of 
30%. Variable importance was assessed using % mean-squared-error 
(%IncMSE; the amount of error incurred by removing the variable from 
the model) and model fit was assessed with the % variance explained in 
out-of-bag (non-training data) samples. The random forests model was 
used to predict DRc at a subset (n = 20) of receivers for every study hour 
of the study period. However, because this simple application corrects 
presence-only data and does not affect zeros, presence-only detections 

were corrected with DRc with Equation 3, generating Detc. To compare 
Det and Detc among environmental variables, a linear mixed effects 
model was fit to these values with data type (Det, Detc), diel period (day, 
night), and tide height (m), and two-way interactions between data type 
and diel period, and data type and tide height as predictors. Acoustic 
receiver was included as a random slope to account for repeated mea-
sures. Backward model selection was used to determine the final model 
structure using log-likelihood tests.

3  | RESULTS

3.1 | Application to a hypothetical dataset

In the generated hypothetical dataset, variability in DRc was 
driven mainly by MR, with additional variance occurring due to DEv 
(Figure 2a). Applying DRc to the hypothetical number of animal de-
tections resulted, in some instances, in large differences between 

F I G U R E  2   In a generated hypothetical 
dataset, (a) the relationship between 
maximum detection range (MR), detection 
range correction factor (DRc), and 
detection efficiency variance (DEv), and (b) 
the relationship between the number of 
raw animal detections and the corrected 
number of detections by DRc. The 
generated hypothetical acoustic telemetry 
data included 1,000 data points, with 
DR varying from 50 to 500 m, DE 
variation from −50 to 50%, and number 
of detections from 0 to 10. The black line 
indicates 1:1 ratio
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the raw detection values and the corrected number of detections 
due to variation in MR and DEv (Figure 2b). For example, two raw 
animal detections during a time period when detection range is low 
(relative to overall system performance) resulted in an underesti-
mate of >1,000% in relative space use during that time period.

3.2 | Application to permit ecology in the 
Florida Keys

In the Florida Keys acoustic receiver array, MR varied widely amongst 
sentinel receivers from 95 to 451  m; it was generally higher in 

deeper-water and lower rugosity sites (Table 2; Figure 3). Receiver DE 
from reference tag detections also varied greatly over time and amongst 
sentinel sites (Figure 4). The random forest algorithm described 75.8% 
of variation in DRc in non-training data amongst receivers during the 
2-month sampling period (Table 3). The algorithm identified site-
specific characteristics as the most important predictors of DRc, with 
benthos type and water depth explaining the most variation. Using 
the random forests algorithm to predict DRc at a subset of receiver 
sites in the Florida Keys, large variation in DRc was observed amongst 
receiver stations due to their environmental characteristics (Figure 5). 
This resulted in varied interpretations of patterns of permit habitat 
use between raw (Det) and corrected (Detc) detection values (mean 

F I G U R E  3   Detection efficiency of a range testing tag by distance from sentinel acoustic receivers from a range testing protocol used to 
determine maximum detection range (MR; red square) and the Midpoint (green triangle) locations for placement of reference tags. Data are 
fitted with a third-order polynomial regression model with a fixed y-intercept at 100
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absolute difference  =  20  ±  22%  SD, 0.08%–127% range; Figure 6). 
There was no significant interaction between data type (Det, Detc) and 
diel period (LME; F1,967 = −1.48, p = .14) or data type and tide height 
(LME; F1,967 = −0.32, p = .74), but in the final model without interac-
tions, there was a significant effect of data type (LME; F1,970 = 2.45, 
p = .01) as well as diel period (LME; F1,970 = −3.76, p < .001) on permit 
detections. Once system performance was accounted for, corrected 
values revealed higher use of channels and basins, and lower use of 
banks than raw values indicated, with the most prominent difference 
in channel habitats during the day (Figure 6).

4  | DISCUSSION

Acoustic telemetry using fixed receiver stations is the most popular 
approach to quantify the long-term space use and ecological interac-
tions of aquatic animals in the wild (Donaldson et al., 2014; Hussey 
et al., 2015), but for study findings to be accurate and thus mean-
ingful it is essential to account for sampling efficiency (acoustic re-
ceiver performance in detecting tagged animals; Payne et al., 2010). 
Yet, studies rarely account for variation in receiver DR (Kessel et al., 
2014), likely due to the challenges associated with quantifying and 
accounting for complex variations in DR over space and time. We 
present a relatively simple and practical approach to accomplish this. 
From our analysis of a generated hypothetical dataset, large differ-
ences between raw animal detection values and our corrected val-
ues (e.g. >1,000%) were observed, illustrating the major differences 
that could theoretically occur between raw and corrected animal 
detection values. In the real-world telemetry dataset, differences 
between raw and corrected detection values were smaller than 
the hypothetical dataset (max 127%), but these differences would 
influence interpretation of the spatial and temporal habitat use of 
permit in nearshore habitats of the Florida Keys. The greatest vari-
ation in permit space use patterns between raw and corrected data 
was observed between habitats and diel periods, with limited differ-
ences amongst tide heights, which is consistent with the variation 
observed in receiver DR based on range testing and reference tag 
data used to derive DRc. This approach could be applied at various 
scales of ecological interest and in diverse aquatic ecosystems with 
distinct causes of variations in system performance. For example, in 
other types of aquatic systems, major sources of DR variance could 
be seasonal macrophyte growth or ice cover.

F I G U R E  4   Mean detection efficiency 
(±95% confidence interval) of a reference 
tag at each sentinel receiver station over 
the course of the study in the Florida Keys

TA B L E  3   Variable importance scores for predictors of a 
detection range correction factor (DRc) from a random forest 
model based on reference tag detections in the Florida Keys 
acoustic telemetry array. %IncMSE refers to the percent increase 
in mean squared error and IncNodePurity refers to mean increase 
in Gini score. Out of bag error refers to % prediction error in non-
training data. Model: DRc ~ Habitat + Benthos + Rugosity + Water 
depth + Diel period + Tide state + Tide height

  %IncMSE IncNodePurity

Benthos 14,417.7 45,401,253.3

Depth 10,454.8 35,827,973.3

Habitat 8,627.7 27,559,240.8

Rugosity 7,109.8 19,735,087.4

Tide height 913.5 3,529,671.7

Tide state 732.6 2,100,992.3

Diel period 230.0 456,008.5

Out of bag error: 24.2  

Mean of squared 
residuals:

5,951.9  
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The approach described here (outlined in Figure 1) could be ad-
opted with many variations (outlined in Section 2.1 and further dis-
cussed below), with more extensive assessments being more ideal 
and less prone to potential errors. Here we used a minimalist ap-
proach (i.e. a relatively small number of sentinel receiver sites, and 
short-term range testing under near-ideal conditions to estimate 
MR and Midpoint). This approach requires relatively few resources, 
which may enable more widespread applications, even in studies 
with major logistical constraints. There is greater potential for error 
with a minimalist approach, although likely much less error than not 
correcting animal detection data for system performance at all. We 
encourage researchers to conduct the most extensive assessments 
of system performance that time and money allow, as well as con-
ducting further research focused on identifying optimal methods to 
balance effort with accuracy.

Overall, our conceptual approach involves three critical compo-
nents: (a) selection of sentinel receiver sites, (b) quantifying MR at 
the onset of the study, and (c) quantifying relative changes in DR (via 
reference tag DE) over time at sentinel sites throughout the study. 
All of these components require careful consideration to effectively 
quantify and account for system performance. Firstly, selecting sen-
tinel sites that capture the range of environmental conditions (both 
site landscape characteristics and temporally varying conditions) 
that exist across the entire receiver array landscape is essential in 
order to utilize modeling techniques to accurately predict DRc at 
all receiver sites based on sentinel site data. Here, a  random for-
ests machine learning algorithm was used to accomplish this; these 
algorithms are highly effective at making data predictions, integrat-
ing numerous predictors of varied data classes, and integrating com-
plex hierarchical relationships between these variables (Breiman, 
2001; Liaw & Wiener, 2002). Intuitively, predictors used to model 
training data should match the range of variables that are explored 
in the animal detection dataset. With this approach, any temporal 
site-specific anomalies in reference tag DE data (e.g. low numbers 
of detections in a certain study hour at a sentinel receiver due to a 
site-specific effect such as boat motor noise) have a lesser impact on 

overall DRc predictions than if hourly site-specific reference tag data 
were used directly to make corrections.

Secondly, because it is well-established from empirical research 
that DR is the major driver of receiver performance (Kessel et al., 
2014), MR estimation via a range testing protocols is a major com-
ponent of the DRc used here to correct animal detection values 
(Figure 2a), and also serves to determine the location of the Midpoint 
for placement of a reference tag to monitor variations in DE over 
time. There are multiple potential range testing approaches. Here 
we used a simple approach in which a range testing tag was posi-
tioned for short periods of time at a range of distances from sentinel 
receivers. A more thorough approach would involve conducting this 
range testing procedure at all receivers in the array to provide more 
accurate estimates of MR at all receivers rather than assuming they 
have similar values to sentinel sites. Another more comprehensive 
approach to range testing would be to station reference tags (which 
generally have longer transmission delays than range testing tags) at 
a similar range of distances from the receivers over longer periods 
(i.e. days to weeks) prior to the initiation of the study, which would 
provide a more comprehensive estimate of MR that incorporates a 
broader range of conditions over time. Further, conducting range 
testing in multiple directions from the receivers would provide a 
more comprehensive measure, as was accomplished by Selby et al. 
(2016). Importantly, this practice alone would not account for long-
term variation in system performance.

Thirdly, to quantify variation in DR over the full duration of a 
study, MR is combined with DEv derived from reference tag data. A 
key assumption with this step is that DE of the reference tag serves 
as an effective relative measure of receiver performance (i.e. DR). 
This assumption could be violated if variation in local conditions 
around the reference tag causes variation in DE to fail to represent 
absolute DR. This could occur, for example, if the reference tag is 
transmitting from a region within a receiver's DR that is relatively 
calm or stable (e.g. in deep water less affected by tidal changes) – but 
if an animal-borne tag transmits from another part of the DR where 
conditions are less stable/more complex (e.g. shallower areas prone 

F I G U R E  5   Map of detection range 
correction factor (DRc) values estimated 
using a random forest model at a 
subsample of receiver locations with 
habitat types marked in unique colours
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to tidal noise), then reference DE may not accurately reflect the true 
DR of the receiver. Reference tag DE may also fail to capture vari-
ability in receiver DR if it is placed too far from the Midpoint. Careful 
consideration of the reference tag location is necessary with this ap-
proach; the location should represent the average (e.g. mean water 
depth) of available conditions around the receiver within the region 
encompassed by the MR. Consideration of the ecology of the species 
(e.g. benthic vs. pelagic) could be warranted as well. A potential al-
ternative to this approach would be to place multiple reference tags 
(i.e. 3 or more) at each sentinel receiver site to estimate variability 
in DR using the same approach described above to estimate MR and 
Midpoint. This approach would require more resources and compu-
tational effort. For example, using three reference tags per site in 
the Florida Keys telemetry array would require at least 27 reference 
tags and moorings, as opposed to the nine used here. This approach, 
like using a single reference tag, could also be vulnerable to local-
ized effects of conditions on reference tag DE, especially with lower 
numbers of reference tags, with three being the bare minimum to es-
tablish a model (e.g. regression) to predict DR. Careful consideration 

of the location of reference tags would also be required, which could 
be informed by an initial MR range testing procedure.

In summary, we have developed and applied a relatively simple ap-
proach to characterize the complex variations in acoustic receiver per-
formance over space and time to improve estimates of animal detection 
data to derive more accurate ecological findings and conclusions. Overall, 
the approach applied to the Florida Keys acoustic telemetry array was 
minimalist (i.e. required relatively little financial investment or time/
effort) in terms of the spatial and temporal extent of the range testing 
procedure and deployment of reference tags. This minimalist approach 
could facilitate greater uptake and application of detection range cor-
rections in fixed station acoustic telemetry studies, and the framework 
proposed here could also be adopted with more extensive applications 
of short and/or long-term range testing over greater spatial and tem-
poral extents when resources (time and money) are available. With the 
increasing application of acoustic telemetry via passive receiver arrays 
to quantify long-term aquatic animal space use and movement patterns 
(Crossin et al., 2017; Hussey et al., 2015), it is essential to develop robust, 
comprehensive, and standardized telemetry practices that ensure the 

F I G U R E  6   Raw (pink; Det) and corrected (blue; Detc) presence-only permit detections/h (±SE) at the receivers shown in the figure by 
habitat type and (a) diel period and (b) tide state
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generated data are accurate and inform conservation actions effectively 
(Brownscombe, Lédée, et al., 2019). This is particularly salient because 
historically there has been a disconnect between telemetry-derived 
knowledge and resource management actions, due in part to distrust 
of telemetry findings (Nguyen, Young, & Cooke, 2018; Young, Gingras, 
Nguyen, Cooke, & Hinch, 2013). Social science surveys of researchers 
who routinely use telemetry revealed that issues related to detection ef-
ficiency and system performance had the potential to introduce biases 
that would reduce uptake of findings by knowledge users (Nguyen et al., 
2018). Indeed, despite the fact that it is recognized that acoustic telem-
etry receivers are imperfect sampling instruments and their performance 
can seriously impact study findings, the majority of telemetry studies to 
date have failed to account for system performance (Kessel et al., 2014). 
It is our hope that researchers find our approach tractable and continue 
to develop and test these methods for further applications to increase 
the robustness and reliability of acoustic telemetry studies.
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