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Abstract Great barracuda (Sphyraena barracuda) are a
high trophic level predator that uses a wide variety of
habitats globally throughout tropical and subtropical
waters. Despite the important top-down pressure this
species likely exerts on fish communities within its
foraging territories, the specifics of spatial ecology re-
main relatively unknown. This study tracked 17 great
barracuda throughout Buck Island Reef National Mon-
ument, a marine-protected area located in St. Croix, U.S.
Virgin Islands (17.786944° N, − 64.620556° W) from
July 2014 to May 2016. Broad- and fine-scale acoustic
telemetry was used to examine individual variability and
study population patterns in residency, site fidelity, ter-
ritoriality, and complexity of spatial use within home
ranges. Network analysis of broad-scale data revealed
spatial and temporal differentiation among the popula-
tion in location of core use areas and showed that these
areas contained multiple unique receiver groups or com-
munities, a product of spatial or temporal variation

within core activity spaces. Results from the fine-scale
positioning system reinforced spatial and temporal
partitioning in core use areas between individuals, indi-
cating territorial behaviors, and showed evidence for
both resident and transient movements. Preliminary
fine-scale analysis also suggested diel variation in loca-
tion of activity spaces. Although ubiquitous throughout
all shallow water habitats, detection patterns for the
study population appear to be influenced by high resi-
dency, territoriality, spatial partitioning, and diel varia-
tion. Understanding the complexities of individual space
use is fundamental to ecologically founded and effective
area-based spatial management frameworks at commu-
nity scales.
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Introduction

Successful application of spatial management ap-
proaches for marine species requires providing adequate
protection of often spatially distinct and temporally
variable activity spaces. To receive full benefits, target
species home ranges must be contained within reserve
boundaries. Mobile species whose whole range cannot
be protected are at risk during movements outside the
protected area (Dunton et al. 2015). Movements among
distinct spatial areas for different life history needs are
common in order to access spawning grounds, nursery
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areas, shelter from predators, and foraging locations
(Burke 1995; Mumby et al. 2004; Meyer et al. 2007;
Domeier and Nasby-Lucas 2008; Luo et al. 2009;
Kimirei et al. 2011). Acoustic telemetry is valuable for
tracking movements of nearshore marine species,
allowing for long-term data sets on residency and mi-
gration (Heupel et al. 2006; Hussey et al. 2015). Quan-
tifying movement patterns can show spatial and tempo-
ral variation in habitat use and also reveal connectivity
among habitat types and management areas. Increased
understanding of home-range size, residency, and site
fidelity can improve assessments of marine protected
area (MPA) efficacy and lead to improvements in future
planning (Meyer et al. 2007; Afonso et al. 2009; Augé
et al. 2013; Letessier and Bouchet 2015; Aspillaga et al.
2016).

Great barracuda Sphyraena barracuda display genet-
ic and behavioral traits that closely resemble reef-
associated fish, but others indicate they are capable of
large pelagic movements, thus occupying a middle
ground between these two distinct movement behaviors
(Daly-Engel et al. 2012). As large, high trophic level
predators, barracuda could exert a significant influence
on fish community structure within their foraging loca-
tions (Blaber 1982; Kadison et al. 2010). Adults have
been documented using all nearshore habitats types in
tropical and subtropical waters globally, but the spe-
cifics of habitat use and spatial ecology remain relatively
unknown (De Sylva 1963; Blaber 1982; Kadison et al.
2010). Great barracuda are believed to aggregate to
spawn during summer months, but to date, no aggrega-
tion locations or behaviors have been documented (De
Sylva 1963; Blaber 1982; Domeier and Colin 1997;
Kadison et al. 2010). One of the few studies that inves-
tigated habitat use by this species indicated seasonal
variation in certain habitats but also demonstrated large
spans of time in which habitat use appeared random
(Faunce and Serafy 2008). The first tracking study con-
ducted for adult great barracuda showed high individual
variability in habitat use, residency, and site fidelity;
however, the ecological functions that drive adult move-
ment patterns remain unknown (O’Toole et al. 2011).
Becker et al. (2016) utilized the same dataset analyzed
for this study and found that individuals occupy small
core use areas, undergo larger sporadic movements, and
demonstrate little benthic habitat preference in location
of core use areas. A spatial use strategy employing
ubiquitously dispersed core areas with sporadic transient
movements leads to questions regarding territoriality

and conspecific overlap, habitat use within home ranges,
and implications for spatial management (Aspillaga
et al. 2016).

Quantifying fine-scale movements within home
ranges can identify spatial differentiation within high-
use areas for different ecological functions and improve
understanding of area and habitat requirements for target
species (Pittman et al. 2014). Variability in movement
patterns, residency, and site fidelity to high-use areas has
been demonstrated for a number of marine species,
driven by factors ranging from habitat and environmen-
tal conditions to population dynamics and life history of
conspecifics and prey species. Season and water tem-
perature are common drivers of shifts in movement
patterns and activity space location, with migratory
species such as Atlantic sturgeon Acipenser oxyrinchus
oxyrinchus moving between coastal hotspots of abun-
dance cued by temperature changes (Melnychuk et al.
2016). Other temperate species such as striped bass
Morone saxati l is have shown seasonal and
temperature-related fluctuations in residency and activ-
ity space (Hollema et al. 2017), while elephant seals
Mirounga leonine have shown behavioral variation in
movements associated with water temperature (Bestley
et al. 2013). Both tropical and temperate species such as
sand tiger sharks Carcharias taurus and white sharks
Carcharodon carcharias also demonstrate temporal and
seasonally driven shifts in activity space via movements
to and from nursery and foraging grounds (Domeier and
Nasby-Lucas 2008; Kneebone et al. 2012). Numerous
reef fish demonstrate diel shifts in habitat use and move-
ment patterns, seeking shelter within reef structures and
resting during the day, then foraging in adjacent seagrass
and reef flats at night (Burke 1995) when visual preda-
tors may be less active (Bosiger and McCormick 2014).

In addition to temporally variable environmental
conditions, spatial variables such as habitat type often
drive shifts in movement patterns: blacktip sharks
Carcharhinus melanopterus have been shown to switch
from fast, linear movements to slow, meandering swim-
ming depending on benthic habitat (Papastamatiou et al.
2009). Prey availability is another strong driver of the
spatial ecology and movements of marine predators.
Optimal foraging strategies—switching between linear
movements when prey is abundant and meandering
random walk patterns when prey is sparse—have been
well documented to explain changing movement pat-
terns in marine predators (Humphries et al. 2010),
though species-specific traits and individual variability
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still influence the expression of these patterns. Grey
seals Halichoerus grypus, for example, display three
distinct movement modes, and only some individuals
display meandering search tactics (Austin et al. 2004).
Changes in behavior such as from foraging to rest also
manifest in changes in movement rate and patterns as
well as in habitat use. Additionally, there is evidence
that habitat complexity influences the dynamics of for-
aging and competition, with implications for the spatial
dynamics of predators (Almany 2004).

Food abundance and conspecific density often influ-
ence home-range size and territorial behaviors. Many
species decrease home-range size, modify site fidelity,
and increase territoriality in order to mitigate the nega-
tive impact of high competition for food on fitness or
reproductive output (Hixon 1980; Ostfeld 1990). The
reef fish beaugregory Eupomacentrus leucostictus dem-
onstrates density-dependent changes in home-range
size, with females benefiting from a “food maximizing”
strategy and expanding home ranges in times of low
food abundance, while male home ranges remain the
same (Ebersole 1980). More territoriality literature ex-
ists for terrestrial predator species. For example, tran-
sient versus resident behaviors have been hypothesized
for coyotes Canis latrans to facilitate an evolutionary
trade-off in which subpopulations maximize dispersal
over individual fecundity in order to minimize compe-
tition for resources at the population scale (Hinton et al.
2015). Black bears Ursus americanus, black-backed
jackals Canis mesomelas, and hyenas Crocuta crocuta
have all been shown to display variations in territoriality
and home-range size in order to maximize fitness and
reproduction (Powell 1987; Boydston et al. 2003;
Humphries et al. 2016). While few specifics are known
about great barracuda reproductive ecology and the
implications of competition on fecundity, territoriality
could indicate a response to high competition for re-
sources to maximize individual fitness. Movement pat-
terns within home ranges, residency, and site fidelity
could provide additional information on population-
level spatial partitioning. To examine movement pat-
terns and habitat use within home ranges, assess evi-
dence for territoriality, and identify high-use areas and
movement corridors throughout the study population,
we used acoustic telemetry to track great barracuda (n =
17) within Buck Island Reef National Monument
(BIRNM) off the northeast shore of St. Croix, U.S.
Virgin Islands, from July 2014 to May 2016. Both
broad- and fine-scale tracking were conducted as

independent but complimentary studies investigating
spatial and temporal variability in movement patterns
for individual fish, as well as among the full study
population. Home range areas were modeled using net-
work analysis community metrics in order to identify
groups of receivers sharing common detection histories,
thereby dividing the array into spatial use categories for
individual fish. These results were summarized across
the study population and mapped to associate use pat-
terns with benthic habitat. AVEMCO Positioning Sys-
tem (VPS) was incorporated into the array to validate
patterns suggested by the broad-scale analysis with pre-
liminary fine-scale visualizations of movement patterns
and intraspecies interactions.

Materials and methods

Study area

BIRNM, located off the Northeast corner of St. Croix,
USVI (17.786944° N, − 64.620556° W), contains a
shelf habitat composed of a patchy mosaic of shallow
ecosystems, including linear reef to the south of Buck
Island and patch reefs to the north and east of the island,
which create shelter for calm lagoon habitats (Fig. 1).
Extensive seagrass beds and sand flats are found to the
south and west of the island, while the northern reach of
the reserve contains patch reefs, colonized pavement,
and a steep drop-off towards a deep oceanic trench
(Costa et al. 2012). The National Park Service (NPS)
manages the MPA and maintains an acoustic telemetry
network that consists of a broad-scale array of receivers
dispersed throughout the shallow water habitats of the
reserve, as well as a VPS located on the western edge of
the Buck Island shelf. BIRNM is bordered by East End
Marine Park (EEMP), a multiuse marine reserve man-
aged by the territorial government, to the east and south,
and unprotected waters to the west and north. In 2001,
BIRNM’s boundaries were expanded 5-fold to its cur-
rent size19,000 acres (~ 7689 ha) and its designation
was switched from multiuse to a no-take reserve.

Broad-scale array design

The broad-scale portion of this study used passive track-
ing with fixed, autonomous omnidirectional acoustic
receivers (VR2W 69 kHz VEMCO Inc., Nova Scotia,
Canada). At the time of the broad-scale study, 52
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acoustic receivers were anchored semi-permanently
throughout shallow water habitats spanning approxi-
mately 10 km2 (Fig. 1). Receivers were suspended 2–3
m above the seafloor and remained in place for the
duration of the study, across all seasons. Sites were
chosen based on habitat type and distance to nearest
receiver in order to minimize overlapping detection
ranges and provide coverage for all benthic habitat
types. Receivers were attached to the bottom using sand
screws (1 m long with 15-cm diameter blades) in soft
sandy areas, and cement blocks in hard bottom habitats
as anchors from which moorings constructed of polypro
line and 20-cm diameter foam floats were tethered.
Range testing was conducted by Selby et al. (2016) on
19 receivers across the 52-receiver array, encompassing
all habitat types in a representative sample of environ-
mental conditions. Fixed delay tags were submerged at
various intervals in each cardinal direction for these test
receivers and used to model detection probabilities giv-
en a range of environmental conditions. Mean detection
probabilities at 100 m were 58.2% and dropped to
26.0% at 200 m. These low detection ranges are due
primarily to high rugosity reef habitat (Selby et al.
2016).

VEMCO Positioning System array design

AVPS was nested within the larger acoustic array (Fig.
1) in June 2015 to examine fine-scale movement pat-
terns of fish. The VPS was predominantly deployed
over seagrass and colonized hardbottom habitats on
the western edge of the shelf drop-off in order tomonitor
diel movements on and off the shelf by smaller reef fish
as part of a separate study. While the broad-scale array
provides presence or absence data within the area of
coverage of an individual receiver, the VPS generates
unique positions of transmissions. The VPS consisted of
28 closely spaced (~ 100 m) receivers (VR2W 69 kHz
VEMCO Inc., Nova Scotia, Canada) with overlapping
detection ranges which allowed individual fish positions
to be triangulated with a high level of accuracy based on
differences in transmission arrival times at three or more
receivers (Espinoza et al. 2011). Receivers were de-
ployed between 7- and 18-m (mean 9.4 m) depth by
cement anchors or sand screws tethering receivers 2–3
m above the seafloor. Synchronization tags or “sync
tags” (VEMCO model V16-4x, 69 kHz) programmed
with a nominal delay of 600 s (range 500–700 s) were
collocated with each VPS receiver to correct for time

drift of the internal receiver clocks. Three additional
stationary reference tags were placed at intermediate
points within the center of the VPS array (Fig. 1).

Barracuda capture and tagging

Great barracuda (n = 35; Becker et al. 2016) were
captured by trolling throughout the study site at 8 knots
using artificial lures and 2 9/0 circle hooks (O’Toole
et al. 2011; Becker et al. 2016). Tagging was only
conducted on fish deemed healthy enough to support
an acoustic transmitter; those with hook damage or other
injuries were not tagged (Becker et al. 2016). VEMCO
V16 (16-mm diameter by 54-mm length, dry weight 8.1
g, 3650 days (~ 10 year) battery life) and V13 (13-mm
diameter by 36-mm length, dry weight 6 g, 1299 days (~
3.5 years) battery life) transmitters were used, depend-
ing on the size class of the tag recipient (range 61–107
cm). All tagged great barracuda were adults or sub-
adults, and all tags were appropriate to the size of the
organisms and did not increase mortality following tag-
ging. Sex was not determined at tagging as there are
minimal external indicators of sex in great barracuda
(De Sylva 1963). Transmitters were programmed to
ping at random once every 60–180 s. After capture, fish
were placed in a Tupperware tote (108 × 54.3 × 45.7 cm)
containing seawater and a 10 g/L concentration of
MS222 was added slowly to the water until the fish
showed slowed gill movement and loss of equilibrium
representative of stage 4 anesthesia (O’Toole et al. 2011;
FAU IACUC Guidelines 2014). While fish were held in
a supine position with gills submerged, tags disinfected
with 70% isopropyl alcohol were surgically implanted
into the body cavity just off the central mid-line between
the pelvic and anal fins. The surgical incision was made
with no. 10 blade carbon steel sterile disposable scalpels
and was closed with 2–3 interrupted sutures using
Ethicon polydioxanone monofilament sterile absorbable
FS-1, 24-mm reverse cutting needle sutures (Model
PDS*II). Halfway through the surgery, fresh seawater
was added to dilute the anesthetic and begin to bring the
fish out of anesthesia. Once total and fork length mea-
surements were taken, fish were placed in ambient sea-
water, either in a separate tote, in a mesh pen (122 × 183
cm, 2.5-cm mesh size) anchored within the calm lagoon
habitat, or held manually facing into the current over the
side of the boat, depending on fish size, until normal
swimming patterns returned at which point they were
released back into the study area from which they were
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captured (Friedlander and Monaco 2007; O’Toole et al.
2011; Becker et al. 2016). No more than four fish were
tagged at each capture site in order to ensure that tagged
animals were distributed throughout the array and to
minimize tag collisions. All sampling and tagging tech-
niques were approved by IACUC no. 2013-0031 (Uni-
versity of Massachusetts Amherst) and NPS study no.
BUIS-00058 and research collect permit nos. BUIS-
2013-SCI-0003 and BUIS-2014-SCI-0006 (Becker
et al. 2016).

Broad-scale data management

Ayear of data spanning July 2014–July 2015 (available
via the Dryad Data Repository at datadryad.org) was
filtered in R version 3.2.2 (R Core Team 2015) and VUE
(VEMCO Inc., Halifax, NS) to remove false detections
due to tag collisions, echoes, and simultaneous
detections. We filtered out any detection that occurred
< 55 s after a previous detection from the same tag,
based on our tags’ 60–180-s ping rate. This assumes
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Fig. 1 Location of Buck Island Reef National Monument
(BIRNM), adjacent East End Marine Park (EEMP) acoustic re-
ceivers, and adjacent protected areas in relation to the island of St.
Croix are shown in the upper panel. The lower panel shows the

location of receiver stations, VPS stations, and reference tag
stations within the shallow water region of BIRNM surrounding
Buck Island and in relation to benthic habitat coverage. NOAA
Biogeography Branch generated the benthic habitat shapefiles
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accuracy of the first detection and classifies the second
detection as false and requiring removal. A cutoff of 3
weeks of consecutive detection at one receiver was set to
filter out mortality events or shed tags. These filtering
procedures removed three of the 35 tagged fish from the
dataset and left 32 great barracuda detected within the
array within the study period. Based on results from
Becker et al. (2016) that indicate low detection frequen-
cies can lead to spurious interpretation of results, we
rejected any dataset showing less than 5% of possible
detections. This filtering left a total of 17 out of 32 great
barracuda for use in this study (Table 1).

VEMCO Positioning System data management

All downloaded data collected from the VPS between
June 2015 and May 2016 were post-processed by
VEMCO. Two-dimensional positions were derived
from the raw detection data using a set of positioning
algorithms that weight the average location of a trans-
mission detected on three or more receivers and favor
the position with lowest error sensitivity (Espinoza et al.
2011; Meckley et al. 2014; Roy et al. 2014). Positions
for both sync tags and animal-implanted tags have an
associated unit-less error or confidence value derived
from the calculation, termed horizontal positioning error
(HPE). Sync and reference tags also have measured
error in meters (HPEm) based on the known location
of the tag in the array (Smith 2013). If there is a strong
statistical relationship between HPE and HPEm, then
derived animal positions can be used with greater con-
fidence (Meckley et al. 2014). Therefore, prior to any
analyses, a HPE cutoff value was assigned by examin-
ing the relationship between HPE and HPEm from the
sync and reference tags with methods adapted from
Smith (2013) and Meckley et al. (2014). In order to
determine the appropriate cutoff value, we binned cal-
culated reference and sync tag positions (1-m
increments up to 25 m) based on ranges of HPE values
and calculated a twice the distance root mean squared
(2DRMS) statistic. Using the relationship between
2DRMS and average HPE value for each bin, we con-
structed linear models with a desired 5-m accuracy (our
selected goal) to designate HPE cutoff values. For a
95% confidence in 5-m accuracy, the 2DRMS equation
deemed that tag positions with an HPE value of > 7.5
should be excluded from analyses, as they were estimat-
ed to have an actual positioning error greater than 5 m.
In general, a lower HPE threshold was warranted due to

the system being particularly noisy (Selby et al. 2016)
and the desire to have more precise estimates for posi-
tions that would allow for more reliable ecological con-
clusions and to avoid the risk of over filtering the data.

Broad-scale tracking analysis

Previous network analysis of the movement patterns for
great barracuda in BIRNM has shown coarse
partitioning of activity space into highly used core areas
to which individuals have high site fidelity and general
use areas with infrequent but repetitive use patterns
(Becker et al. 2016). We have extended this analysis of
individual fish networks in order to look for patterns
across the study population. Using the igraph package
(Csardi and Nepusz 2006), we generated networks for
individual fish with receivers as nodes and movements
between them as edges weighted by the number of
movements connecting each receiver pair. These net-
works were used to generate centrality rankings for
receivers, based on centrality degree, or the number of
edges connected to a single node including self-loops
(Ledee et al. 2015). We summed the centrality rankings
of individual fish for each receiver in order to identify
common patterns across the array network regarding
high-use areas for the study population and mapped
these cumulative centrality rankings in relation to ben-
thic habitat type.

Building off previous work using network analysis to
identify commonalities between network nodes (Finn
et al. 2014), we used similar methods to identify receiver
groups displaying common properties for individual
fish. We refer to these receiver groups henceforth as
“spatial communities,” defined as groups of nodes that
have a stronger relationship to one another than to the
rest of the nodes in the network. There are several
algorithms used to determine how to divide network
relationships into community groups, many of which
were tested for usefulness in analysis of acoustic telem-
etry array network models by Finn et al. (2014). Using
the movement matrices generated to develop the cen-
trality rankings, we applied the fast-greedy algorithm to
test for differentiation between receivers within an indi-
vidual fish’s network. Fast-greedy works by hierarchi-
cally dividing receivers into groups, based on similar
patterns of connections to other receivers, and provides
as output a list of communities based on these traits
(Clauset et al. 2004; Newman and Girvan 2004). In
order to determine the category and significance of these
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community designations, we assessed each node
(receiver) within the community for the number of in-
degree links (links to nodes within the community
group) and out-degree links (links to nodes outside the
group). Wilcoxon rank sum tests were employed to test
for significance of each group by indicating whether the
community has significantly more links within, which
indicated a positive community. Conversely, a group of
receivers that demonstrate significantly greater connec-
tions to receivers outside their community is an anti-
community (Finn et al. 2014). Positive communities can
be thought of as destinations within a total activity
space. They could be a resident territory or a feeding
or spawning ground where a fish travels to and remains
long enough to generate frequent connections between
receivers within that space (Finn et al. 2014). Anti-
communities represent groups of receivers that have
more connections to receivers outside their community
than within it. These communities can be thought of as
transit hubs or places that a fish frequently passes
through to get to another destination, and are indicative
of movement corridors (Finn et al. 2014).

Communities were plotted as spatially referenced
graphs with edges weighted by number of movements

between nodes and with nodes weighted by numbers of
connecting edges. These plots demonstrate along what
lines spatially proximate receivers are being divided
among communities and make direct comparisons with
spatial variables such as benthic habitat type more intu-
itive. They also give a visual representation of move-
ment patterns, as edges laid out in this context begin to
approximate direction and area of movements within the
array. For example, great barracuda with high residency
to a small core area will result in a community pattern
resembling spokes on a wheel, while a highly mobile
roaming predator would result in large repeated loops or
a tangled web of lines (Finn et al. 2014). Cumulative
maps were made that summarize station values for
significant communities for all analyzed fish, divided
into positive communities and anti-communities. For
community membership maps, any receiver present in
a positive significant community was assigned a value
of 1, an anti-community member received a value of −
1, and no significant membership a value of zero. These
community membership scores for each tag were then
summed by station. Cumulative membership scores de-
fined commonly used positive communities (high pos-
itive value), highly used anti-communities (negative

Table 1 Dataset summary for all tags analyzed. Morphometric
and detection history summaries include tag ID (Tag), fork length
(FL), total number of detections (Detections), remaining number
of detections after filtering processes (Detections > 55), the ratio of

observed over expected detection, based on tag ping rates (Obs/
exp), and the number of days each tag was detected in the array
over the year-long study period (Days heard)

Tag FL (cm) Detections Detections > 55 Obs/exp Days heard

173 84.5 19144 13572 5.160848734 117

24550 97 27585 24433 9.290820595 364

24554 61 15706 13282 5.050574188 364

24556 85 51448 44037 16.74537988 364

24776 84.5 182495 152752 58.08502548 364

24779 92 31506 31106 11.82827591 348

24780 90.5 43067 39693 15.09354324 363

24784 90.5 250055 224179 85.24564606 364

24785 79.5 191770 174354 66.29933835 364

26793 101.5 163087 73399 27.91048749 364

26796 63 39963 19178 7.292569777 364

26797 96 175140 77435 29.44520496 270

26798 89 102271 50343 19.14328086 361

26799 71 82509 51276 19.49806069 364

26800 97 221287 106074 40.33538672 364

26801 107 115956 57774 21.96897102 364

26802 103 152258 32225 12.25378356 332
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value), or areas with neutral use due to lack of use or
variable use among individuals.

Fine-scale tracking analysis

A limited amount of initial data from the VPS was
available for a preliminary analysis of fine-scale move-
ment patterns of great barracuda (n = 5) in order to guide
future research. To examine temporal movement varia-
tions at a finer spatial resolution, filtered positions for
each individual fish were binned by diel stage as day,
night, or crepuscular (1 h before sunrise and 1 h before
sunset). Sun ephemerides calculations with approxi-
mately 1-min accuracywere performed in the R package
maptools with the associated algorithms supplied by
NOAA (Bivand et al. 2017). Diel positions for the three
great barracuda (Tags 24785, 26799, and 26801) with
the most robust position histories were plotted using the
ggplot2 package (Wickham 2009) to illustrate potential
diel patterns in spatial use within the VPS array. To
investigate any patterns of distinct space use between
individual fish within the VPS array, positions for bar-
racuda were illustrated using the ggplot2 package
(Wickham 2009) on the daily scale, which allowed for
a visual comparison of variation in fine-scale movement
patterns. Two consecutive days in early February and
late April 2016 were ultimately chosen as target days for
comparison since they contained the greatest number of
tagged barracuda present and provided the best oppor-
tunity to compare fine-scale movement patterns of indi-
vidual fish.

Results

Broad-scale network centrality ranking and spatial
community plots

Tracking of the study population (n = 17) yielded >
1,000,000 filtered detections within the array
(Table 1). Detection histories were predominantly con-
sistent throughout the study period for all individuals
and did not show any consistent seasonal patterns, with
fish detected on average 341 days per year (median =
364 days per year). Individual fish consistently utilized
home ranges dispersed across all benthic habitats as well
as making occasional larger forays into the rest of the
array (Becker et al. 2016). The fast-greedy algorithm
separated the array into 5.82 (± 2.35) mean communities

per fish when results for individual fish were summa-
rized across the study population (Table 2). Once sig-
nificance testing was conducted, the average number of
significant communities per fish was 1.65 (± 0.61). The
majority of significant communities were positive, with
more connections to receivers within the community
than outside of it. Although in the minority, there were
several significant anti-communities as well, one each
for Tags 26796, 26793, and 24556. Significant commu-
nities had on average greater numbers of receivers with
higher ratios of in versus out connections than non-
significant communities. Positive communities and
anti-communities occurred with similar frequency be-
fore significance testing was conducted (mean of 2.65
positive versus 2.71 anti), but significant communities
were muchmore frequently positive than anti (25 versus
3; Table 2).

Significant communities included more receivers on
average than the core use areas previously defined by
network analysis (Becker et al. 2016), possibly because
these earlier methods were looking only at network
centrality degree rather than the more nuanced hierar-
chical model employed by the fast-greedy algorithm.
Additionally, the fast-greedy algorithm frequently iden-
tified two significant communities, in addition to the
presence of a third non-specific pattern of movement
rather than dividing the use areas into two groups of core
and general use areas (Becker et al. 2016). Spatial
community plots for individual fish (Fig. 2) show spa-
tially proximate groups of receivers that correspond
both with intensity of use, shown by weight of receiver
nodes, and with broad benthic habitat zones. Cumula-
tive maps show higher centrality values and positive
community membership across linear reef and seagrass
(Fig. 3), with positive communities more closely asso-
ciated with seagrass areas adjacent to reefs and colo-
nized pavement. Anti-community sums highlight two
open areas adjacent to highly rugose linear reef within
BIRNM (Fig. 3). However, numbers even for these sites
are low, with no more than two fish indicating these
areas as an anti-community. Positive communities on
the other hand, showed values as high as 11 out of 17
individual fish (Fig. 3).

Fine-scale diel variation and comparison of movement
patterns

For a period of approximately 1 year (June 2015 to
May 2016; 348 days), the VPS calculated a total of
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157,924 positions for thirteen great barracuda (Table 3),
and of those, number of positions per fish ranged from 1
position (Tag 24555) to 141,957 positions (Tag 24785).
The sync tags performed quite well in the system, with
95.8% of transmissions logged on three or more re-
ceivers indicating reliability in representative estimates
of animal positions. A minimum of 100 filtered posi-
tions was used as a cutoff to ensure that any ecological
inferences made from these data were better supported.
Therefore, out of the thirteen fish that were detected in
the VPS, only five passed our cutoff value (Table 3).
Collectively, the five great barracuda generated 125,018
positions, which represented 79.3% retained from the
unfiltered positions. The five selected fish had a wide
range in number of retained positions (108–121,855 ±
24,216.7; Table 3).

The preliminary results from these five fish indicate
diel variation in activity space and individual variation
in movement patterns with some fish were more active
within the VPS at night while others were more active in

the VPS during the day. Activity was defined by the
numbers of retained positions during day, night, and
crepuscular time periods (Table 3). While some overlap
in diel use areas occurred, all five fish analyzed demon-
strated spatial differentiation in daytime versus night-
time activity space, though areas were not completely
distinct and there were no clear patterns in crepuscular
movements (Fig. 4). Daily plots of great barracuda
positions showed large individual variation in detection
patterns (Fig. 5). All four plots, regardless of day or
month, showed Tag 24785 with by far the most posi-
tions. Tag 26799 was also present in every plot, but with
far fewer positions. Other great barracuda were present
sporadically, with few positions generated on each day
of presence. Tag 24785 dominated the central portions
of the VPS, while Tag 26799 was only detected in the
southwest portion of the VPS. There was limited spatial
overlap between observed great barracuda. Where over-
lap did occur, it was predominantly along the edges of
Tag 24785’s use area. Tag 24785 had positions that were

Table 2 Fast-greedy summary statistics for each tagged great
barracuda. For both total communities and significant communi-
ties (identified from Wilcoxon tests), the number of communities,
mean number of receivers per community, mean in connections
per community, and mean out connections per community are

reported. The total positive, anti-, and neutral communities are
listed for general communities, while the mean p values for com-
munity significance testing and the percent significant communi-
ties that were positive are reported for significant communities

Communities of receivers Significant communities of receivers

Tag No. Receivers In Out Pos Anti NA No. Receivers In Out p value %Pos

26802 6 4.67 21 5 4 1 1 2 9.5 51 6.5 0.001 100

26801 7 5.14 30.9 24.6 3 3 1 2 8 63 15 0.018 100

26800 5 8.4 43.2 23.2 3 2 0 2 13.5 78 27 0.0044 100

26799 8 5.5 32.3 17 3 5 0 2 15.5 106 20.5 > 0.001 100

26798 4 7.5 35.5 8.5 2 1 1 1 23 118 13 > 0.001 100

26797 5 5.8 31.2 14.4 2 2 1 2 11 67 15 0.0012 100

26796 11 4.36 19.1 20.9 4 6 0 2 10 42 27 0.011 50

26793 5 10.4 80.4 68.4 2 3 0 2 15.5 118 70.5 0.014 50

24785 5 6 28.8 14.4 1 3 1 1 22 118 20 > 0.001 100

24784 5 5.4 27.2 16 2 3 0 2 11 60 16.5 0.0019 100

24780 6 4.17 17.7 7 4 2 0 2 10 47 11.5 0.003 100

24779 4 3.5 16 7.5 3 1 0 1 9 48 12 0.0012 100

24776 2 4.5 14 4 1 0 1 1 7 24 4 0.0037 100

24556 10 3.6 13.8 18.4 3 7 0 3 7 28.7 20.7 0.014 66

24554 8 3.88 17.5 20.5 2 6 0 1 11 60 18 > 0.001 100

24550 5 4.2 14.4 8.4 4 1 0 1 8 28 10 0.022 100

173 3 2.67 8.7 3.33 2 0 1 1 4 16 3 0.02 100

Mean 5.8 5.3 26.6 16.6 2.7 2.7 0.4 1.7 11.5 63.1 18.3 0.01 92.1
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highly concentrated, indicating repeated use of the same
resident space, while individuals with fewer positions

showed movements that appeared more sparse and tran-
sitory (Fig. 5).

Discussion

As a population, BIRNM great barracuda appear to be
generalists using all habitat types, with individual vari-
ation in habitat use based largely on the location of core
use areas. Though present in all habitats and generalists
on the population level, spatial differentiation in move-
ment patterns that corresponded to benthic habitat
changes was present within individual home ranges.
Individuals showed consistent residency patterns within
high-use activity spaces throughout the year, with little
seasonal variation. Though they made sporadic forays
outside of these territories, they always returned to core
use areas, displaying high site fidelity. These broad
movements showed no temporal synchrony across the
population and little overlap into other great barracuda
territories. Where spatial overlap occurred, it tended to
be on the edge of a different individual’s activity space
as a transitory movement with low likelihood of tempo-
ral overlap, indicating territoriality.While broad patterns
of high and low use areas remain for individual fish
(Becker et al. 2016), receiver communities show more
complex movement patterns within home ranges. Fine-
scale analysis of movements showed preliminary evi-
dence of diel variation within individual activity spaces,
while broad-scale analysis showed a rough correspon-
dence between receiver community groups and benthic
habitat boundaries.

Documenting habitat associations of marine species
is a vital tool for marine spatial planning, as benthic
habitats are often used to predict species distributions
(Leslie et al. 2003; Halpern et al. 2008). Great barracuda
have been documented in all coastal subtropical and
tropical waters (De Sylva 1963), and previous studies
have shown mixed results regarding habitat preference
(Faunce and Serafy 2008; O’Toole et al. 2011). Similar-
ly, the equal distribution of high centrality receivers
throughout the array at the population level showed little
indication of preference for a specific benthic habitat
type for this study population. However, community
membership analysis showed that spatial differentiation
in movement patterns within each individual’s home
range corresponded with broad habitat zones, with com-
munity membership partitions for individuals often oc-
curring along habitat transitions, even between spatially
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proximate receivers, which is consistent with research
documenting changes in movement patterns of other
large marine predators over different habitat types
(Kneebone et al. 2012). The two significant anti-
communities both occurred in open areas adjacent to
highly rugose linear reefs. One was found in the north-
ern part of the array in an area shown to have poor
detection ranges (Selby et al. 2016). Therefore, this area
may naturally generate sporadic detection histories that
could give appearance of a movement corridor due to

frequent missed detections. The other anti-community,
on the south side of the island within a shallow lagoon,
has been shown to have adequate detection range, pro-
viding greater confidence that the area is a movement
corridor between the lagoon and other reefs. Though
population-level patterns were slight, they also corre-
spond with benthic habitat. Receivers located within
reef and seagrass habitat showed the highest rates of
positive community membership and centrality. These
habitats, known for their high fish biomass and diversity
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(Moberg and Folke 1999; Grober-Dunsmore et al.
2007), could function as prime hunting grounds for this
population, resulting in unique movement patterns in
these areas and therefore high rates of significant com-
munity membership.

Additional research quantifying these unique move-
ments is required in order to determine the drivers of this
variability, but some initial conclusions can be drawn
from the presence of multiple significant positive

communities. Positive communities represent destina-
tions or core use areas (Finn et al. 2014). Animals that
showed high residency and high differentiation in hab-
itat use would have movement patterns that generated a
greater number of significant positive communities,
while highly mobile species’ networks would be dom-
inated by anti-communities (Finn et al. 2014). Multiple
positive spatial communities within the activity spaces
of individual great barracuda suggest the presence of

Table 3 Total number and filtered number of positions generated
for all great barracuda within the VEMCO Positioning System
(VPS). Asterisks indicate fish that had over 100 positions kept for

analyses based on having an estimated positioning error of > 5 m.
Number of days, nights, and crepuscular positions are also shown

Tag Original positions Filtered positions Percent retained Day positions Night positions Crepuscular positions

26801* 1237 444 35.9 444 0 0

26800 4 0 0.0 – – –

26799* 13,983 2443 17.5 811 1552 80

26796 94 4 4.3 – – –

26793 28 18 64.3 – – –

24785* 141,957 121,855 85.8 65,807 47,241 8807

24784 4 3 75.0 – – –

24780 8 4 50.0 – – –

24779* 342 168 49.1 168 0 0

24778* 151 108 71.5 107 1 0

24556 16 14 87.5 – – –

24555 1 0 0.0 – – –

24554 99 24 25.5 – – –

Fig. 4 VEMCO Positioning System (VPS) position locations for
three great barracuda (Tags 26799, 24785, and 26801) binned by
day, night, or crepuscular hours across the duration of the fine-
scale tracking period (June 2015–May 2016). Crepuscular

detections are shown in light grey, daytime detections are shown
in dark grey, and nighttime detections are shown in black. There is
slight deviation in latitude values between each panel
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multiple unique use areas within the overall activity
space but does not indicate the high differentiation ex-
pected of an animal with highly specific habitat prefer-
ences (Finn et al. 2014). A rough correspondence with
benthic habitat boundaries indicates that movements
may shift in reaction to habitat (Papastamatiou et al.
2009) but does not demonstrate a strong habitat bias.
One explanation could be a change in foraging behav-
iors in different habitat types (Persson and Greenberg
1990; Austin et al. 2006) or the use of different areas of
the home range for rest versus foraging (Papastamatiou
et al. 2015). In addition, temporal differentiation in
movements could exist, consistent with seasonal pat-
terns shown in previous studies (Faunce and Serafy
2008) or with diel variation that could be expected from
a visual predator such as a great barracuda (James and
Heck 1994). The lack of temporal synchrony means that
a population-level seasonal migration like a spawning
aggregation (De Sylva 1963; Blaber 1982; Kadison
et al. 2010) is not shown by the study population but
does not rule out seasonal environmental drivers such as
weather that have been documented to influence juve-
nile great barracuda habitat use (Faunce and Serafy
2008) and drive large movements outside of home
ranges (Aspillaga et al. 2016). Fine-scale tracking shows
evidence for diel portioning of activity spaces, although

these spaces were not entirely distinct, and is consistent
with previous research showing shifts in habitat use
during midday periods by great barracuda (O’Toole
et al. 2010). Diel variation in movement patterns could
be driven by changes in foraging behavior, shifts from
foraging to rest, or light availability impacting hunting
(James and Heck 1994; Papastamatiou et al. 2015).

In addition to the presence of multiple significant
positive communities indicating differentiation of use
within multiple core areas, anti-communities and low
centrality receivers demonstrate that transient move-
ments occur outside the high-use areas. The presence
of anti-communities, even though most were not statis-
tically significant, indicates that while not frequent
enough to generate a significant number of links be-
tween receivers, mobile and resident movement patterns
were commonly displayed within the study population.
The infrequency of significant anti-communities, how-
ever, indicates that these individuals are predominantly
resident within their home range, with larger exploratory
movements occurring less frequently. Detections pat-
terns suggesting resident and transient movement modes
are present in both fine- and broad-scale arrays. The
existence of these two separate movement categories is
reinforced by the sporadic and infrequent movements
shown outside of core use areas (Becker et al. 2016).
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These patterns of residence and potential for high mo-
bility are consistent with genetic and tracking studies
indicating characteristics of great barracuda are com-
mon to both reef-associated as well as pelagic species
(O’Toole et al. 2011; Daly-Engel et al. 2012). Previous
tracking studies provide support for the presence of both
resident and transient behaviors (O’Toole et al. 2011).
However, our results indicate that many individuals
demonstrate both movement behaviors rather than indi-
cating behavioral subpopulations (O’Toole et al. 2011).
While more research would be needed to identify
drivers of movement behaviors, there is strong evidence
for switches between linear and randomwalkmovement
modes during foraging based on prey availability and
density for other marine predators (Humphries et al.
2010; Benoit-Bird et al. 2013) as well as evidence of
weather events driving large movements of otherwise
resident fish (Aspillaga et al. 2016).

The even dispersal of core use areas among all habitat
types for individuals shown by broad-scale analysis
indicates that great barracuda prioritize unique, individ-
ual activity spaces over preferential habitat types, a
population-level spatial differentiation common in terri-
torial animals (Ostfeld 1990). Fine-scale tracking rein-
forced evidence from the broad-scale array, and in com-
bination, these results suggest that great barracuda in
BIRNM display territoriality within their core use areas.
Little spatial overlap was seen in heavily used areas of
an individual’s activity space. Existing overlap does not
appear to overlap temporally, with the bulk of detections
occurring at core use area edges, at different times of
day, or as a rapid movement of one great barracuda
through the core use area of another. The large decrease
in retained positions for non-resident fish indicates that
generated positions were occurring on the edge of the
dominant territory and beyond the capability of the VPS
to accurately triangulate a position (Smith 2013). High
conspecific density could drive territoriality (Hixon
1980), which is often a mechanism for mitigating intra-
specific competition for resources and maximizing fit-
ness or fecundity (Powell 1987; Hinton et al. 2015). The
even dispersal of home ranges with little overlap
displayed by the study population resembles
individual-level spatial niche partitioning, potentially
to avoid competition for resources (Ostfeld 1990).

Though providing valuable data on a little-studied,
ecologically important coastal predator, there are some
inherent limitations to our study that could be built upon
with future research. The fine-scale analysis presented

here is preliminary. As more data from the VPS be-
comes available, allowing for more rigorous analyses,
further work following up on the initial results presented
here could better test theories of diel variation and
movement behaviors. The bulk of detections occur with-
in core use areas, but transition movements are less
likely to be as thoroughly detected by the broad-scale
array, potentially skewing the dataset towards resident
movements. However, these missed detections are less
likely within the VPS, with its more thorough coverage,
and the detection patterns seen there support the inter-
pretation of transient movements outside of core use
areas as sporadic. More research is needed to quantify
the differences between significant communities and
test drivers of these patterns. In particular, it would be
beneficial to incorporate the influence of prey distribu-
tions on the differentiation seen between movement
types. Multiple species across all trophic levels are
tagged within BIRNM and a larger multispecies study
on interspecies interactions could further illuminate the
roles of predation, competition, and community dynam-
ics on movement patterns. Many of the barracuda used
in this study were monitored with 10-year tags, and
continuing to assess their movements will help to deter-
mine whether territories remain static throughout the
adult life of barracuda or whether individuals shift to
more preferential habitats as they increase in size.

Increased understanding of the spatial ecology of
marine species within MPAs is vital for determining
the ecological impact of reserves as well as assessing
their management efficacy. Residency, site fidelity, and
home range are important parameters for quantifying
movement patterns within a spatial management frame-
work (Augé et al. 2013) and, in combination with ben-
thic habitat associations and inter and intraspecies inter-
actions, illuminate ecological and trophic influence of
target species (Crowder and Norse 2008). Fine-scale
tracking and quantifying complex movement patterns
can identify locations of ecologically vital areas (Augé
et al. 2013). Great barracuda in the study population
demonstrated high site fidelity, territoriality, and diel
variation in activity space, and showed high residency
to core areas in addition to infrequent transient move-
ments. The population-level spatial partitioning of core
use areas shows an even distribution of great barracuda
throughout the array and benthic habitat types, but with
individuals showing differentiation in use patterns with-
in their territories. The territoriality demonstrated within
the study population illustrates high intraspecific
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competition and could indicate spatial partitioning to
allocate resources. While more research is needed to
determine specific ecological drivers of movements,
increased knowledge of the fine-scale spatial ecology
of this predator provides insight into its ecological in-
fluence on prey and conspecific populations through
top-down pressure and competition with other sympat-
ric predators.
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