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INTRODUCTION

In recent decades, fisheries management has
shifted from single-species stock management to -
wards adopting ecosystem-based principles (Pikitch
et al. 2004), with increasing emphasis on spatial
frameworks such as the creation of marine protected
areas (MPAs; Pauly et al. 2002, Airame et al. 2003,
Douvere 2008). While the increase in MPA estab-

lishment in the last decade (Spalding et al. 2013) is
broadly seen as a conservation success (Allison et
al. 1998, Lester et al. 2009, Cressey 2011), the actual
net benefits that MPAs have on the ecosystems and
human populations within and surrounding them is
variable (Claudet et al. 2010, De Santo 2013, Edgar
et al. 2014). Recent studies have shown a global
trend of MPA failure, often caused by insufficient
overlap in MPA area and target species range. Even
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where planning aligns with ecological needs, suc-
cess is contingent on compliance with restrictions
and sufficient enforcement (Edgar et al. 2014, Klein
et al. 2015). Large-scale assessments of MPA effi-
cacy evaluate home ranges modeled as static core
use areas (Pressey et al. 2007). However, dynamic
movement patterns vary in relation to habitat use,
population dynamics, species interactions, and phy -
sical environmental variables, as well as in relation
to temporal scales ranging from life-span ontoge-
netic shifts (Polis et al. 1997, Mumby et al. 2004,
Kimirei et al. 2011) to diel foraging migrations
(Burke 1995, Meyer et al. 2007, Luo et al. 2009). In
order to benefit mobile species whose home ranges
cannot be fully protected, MPAs can still aid conser-
vation goals by protecting essential ecological func-
tions such as spawning or feeding (Runge et al.
2014, Pérez-Jorge et al. 2015), assuming no other
fisheries management tools that could reduce fish-
ing effort are employed. In many cases, more re -
fined analysis of movement data can provide man-
agers with the information needed to maximize the
overlap of target species’ shifting habitat needs
throughout their life cycles (Bolger et al. 2008, Buler
& Moore 2011, Runge et al. 2014).

Cumulative research on MPA efficacy has shown
that when implemented correctly, reducing fishing
pressure typically leads to increased fish abundance
(Allison et al. 1998, Murawski et al. 2000, Roberts et
al. 2001, Pauly et al. 2002, Halpern 2003, Lester et al.
2009). However, guidance on correct implementation
has received less attention. Quantitative assessments
are required to determine whether decreased fishing
pressure in designated zones results in healthier eco-
systems (Heupel et al. 2006b, Farmer & Ault 2011).
Trophic dynamics, fish assemblage structure, and the
history and type of harvest in a region may all im -
pact how an ecosystem recovers after fishing pres-
sure is re  duced or eliminated (Murawski et al. 2005,
McClanahan et al. 2007, Lester et al. 2009, Claudet et
al. 2010). In addition, geographic and socioeconomic
factors also play a huge role in the success of MPAs
(Murawski et al. 2005, Suuronen et al. 2010, Edgar et
al. 2014). In some cases, closing of non-relevant areas
will lead to greater concentration of fishing effort in
adjacent habitats (Murawski et al. 2005, Suuronen et
al. 2010). If target habitats are misidentified, or if spa-
tial closures are based on political feasibility rather
than ecological research, managers run the risk of
merely shifting or even intensifying fishing pressure
while simultaneously ‘meeting’ conservation goals
by increasing the percent of space under protection
(Suuronen et al. 2010).

Gathering the information needed to manage
MPAs requires building a nuanced understanding
not just of the target area or habitat type, but also of
the interrelationships between species, adjacent
habitats, and regional networks of ecosystems and
metapopulations (Crowder & Norse 2008). This can
be a very complex task and may not initially be real-
istic in a management decision-making timeline
(Tallis et al. 2010). Metrics that summarize spatial
use, such as home range utilization distributions or
area estimates, can be used to approximate cumula-
tive activity space of an individual or population (Kie
et al. 2010). These metrics can be very useful as a
planning tool, but must be applied carefully so that
broad summaries are not excluding nuances in habi-
tat use vital to a target species’ life history (Powell
2000, Kie et al. 2010). This is especially true for
highly mobile species, given that spatial closures are
used to target areas of specific ecological relevance,
rather than cover entire home ranges (Buler & Moore
2011, Runge et al. 2014). Additionally, even for spe-
cies whose movement patterns are well represented
by traditional home range estimators, many marine
species that MPAs seek to conserve currently lack
comprehensive home range estimates.

Tracking of movements using telemetry is valu-
able in quantifying habitat use within and between
habitat types, allowing for long-term data sets on
residency and migration patterns (Heupel et al.
2006a, Hussey et al. 2015). Terrestrial telemetry has
traditionally used kernel utilization density (KUD)
estimation to predict core activity space using
telemetry data (Kie et al. 2010, Jacoby et al. 2012a).
Terrestrial data often utilize technologies such as
GPS collars, which produce a large number of
highly accurate and unique positions (Hedger et al.
2008, Ledee et al. 2015). Acoustic telemetry is a rel-
atively new method that is rapidly increasing in
popularity (Cooke 2008, Hussey et al. 2015). In con-
trast to other forms of telemetry, these arrays gener-
ate data that are spatially limited to the range of the
acoustic receiver, and datasets take the form of
repeated detections at the location of the receiver
rather than the animal. Methods for analyzing the
often vast quantities of data from the marine envi-
ronment are still developing (Heupel et al. 2006b,
Ledee et al. 2015). Estimates of activity space are
ultimately as coarse as the spatial scale of the array
design, or alternately, use this coarse scale data to
make broad interpolations through density estima-
tion methods such as a KUD (Hedger et al. 2008,
Ledee et al. 2015). While KUDs can provide valu-
able data, there is concern that these interpolation
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methods may be less accurate for broad-scale
acoustic telemetry (Hedger et al. 2008).

By incorporating temporal sequences of detections
into analysis rather than analyzing only the aggre-
gated data points, dynamic Brownian bridge move-
ment models (DBBMMs) are an alternate utilization
density method to KUD that takes movements be -
tween receivers as the input, interpolates intermedi-
ate points between these 2 detections, and then
bases density estimates off of the interpolated points
(Horne et al. 2007). 

Network analysis takes a completely different ap -
proach from utilization density estimators (KUD and
DBBMM) by quantifying relationships between
points, referred to as nodes, and connections be -
tween those points, referred to as edges, within inter-
connected networks (Jacoby et al. 2012a,b, Finn et al.
2014). It has been used for analyzing neural net-
works, social networks, and increasingly, spatial net-
works. The format is well suited to the intercon-
nected nature of individual receivers that comprise a
broad-scale acoustic array, but its potential has only
recently begun to be explored.

As activity space estimates often have direct reper-
cussions for management decisions, it is important
to understand whether and under what conditions
there are variations in the estimates produced by dis-
parate analytical methods. We sought to investigate
how detection frequency and methodological choice
influenced estimates of core activity space of great
barracuda Sphyraena barracuda tagged with trans-
mitters within an extensive broad-scale, passive
acoustic telemetry receiver array deployed at Buck
Island Reef National Monument (BIRNM), a marine
protected area in the US Virgin Islands. The objec-
tive for this study was to generate activity space esti-
mates for great barracuda within BIRNM using
telemetry datasets generated from 1 yr of tracking. In
order to provide a more robust evaluation of activity
space estimates, we compared 3 estimation methods
and investigated the effect that methodological
choice had on the resulting area estimates. Specifi-
cally, we aimed to compare home range estimates
from 2 utilization density methods (KUD and DBBMM)
as well as from central activity spaces indicated by
network analysis. In addition to the methodological
comparison, we used generalized linear models
(GLMs) to assess how variation in detection fre-
quency (referred to throughout this paper as ‘detec-
tion history’) for individual great barracuda influ-
enced activity space estimates and the ability to
detect body size as an ecological driver of home
range. All utilized methods and comparisons were

taken into account in order to generate home range
estimates for individual fish as well as to provide
summaries across the study population.

MATERIALS AND METHODS

Study site and array design

BIRNM is an MPA managed by the US National
Park Service (NPS). The monument is located on the
northeastern shelf off the island of St. Croix (Fig. 1),
USVI. In 2001, management shifted from restricted
re creational take to no-take and the original park
boundaries were expanded 5-fold to over 19 000 acres
(~7689 ha). BIRNM is bordered to the east and south
by St. Croix East End Marine Park, a mixed use MPA
managed by the territorial  government. To date, no
studies have quantified fish species home ranges,
habitat use, and connectivity among habitat struc-
tures within and adjacent to the park. BIRNM is com-
posed of a shelf habitat containing both shallow- and
deeper-water habitats bordered to the north and west
by a steep drop-off to wards an oceanic trench. An ex-
tensive linear reef runs parallel to the coast from the
southeast to the northeast coastline, creating a con-
tiguous lagoon habitat. High rugo sity linear and
patch reefs are interspersed with colonized hard bot-
tom and spur and groove reef to the north and west of
the island. Sandy flats and seagrass occur to the south
and west. Habitat types are highly interwoven in a
patchy mosaic pattern (Costa et al. 2012).

We used presence/absence data derived from
 passive detection of tagged barracuda using a broad-
scale, non-overlapping array of fixed, autonomous
acoustic receivers (VR2W 69 kHz, VEMCO) de -
ployed as part of a multi-partner collaborative re -
search effort. A total of 52 acoustic receivers were
anchored semi-permanently throughout the shallow
water habitats of the monument. Anchors included
cement blocks in hard-bottom habitats and 3 foot
(91 cm) long sand screws with 6 inch (15 cm) dia -
meter blades in soft-bottom habitats. Sites were cho-
sen based on proximity to other receivers, with the
intention of avoiding overlapping ranges and provid-
ing equal coverage among the various benthic habi-
tats (Fig. 2). Range of detection of an acoustic signal
by a fixed receiver can be influenced by bottom
structure, depth, and nu merous other environmental
factors such as suspended particulate matter, back-
ground noise, currents, turbidity, wave height, and
weather and can vary from several meters to
upwards of 100 m, de pending on placement and con-
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Fig. 1. Location of St. Croix (US Virgin Islands) within the Caribbean. Inset shows the location of Buck Island Reef National 
Monument (BIRNM) and adjacent protected areas in relation to St. Croix
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Fig. 2. Location of receiver stations within the shallow water section of Buck Island Reef National Monument (BIRNM). Benthic
habitat shapefiles were generated by NOAA Biogeography Branch. Deeper water habitats outside the areas mapped by 

NOAA are shown here in white.
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ditions (Kessel et al. 2014). Range testing was con-
ducted on the BIRNM array to calculate maximum
detection range and the average range of 50%
detectability was 125 m (Selby et al. 2016).

Barracuda capture and tagging

Great barracuda were captured by trolling at 8
knots with medium action 10–50 lb (4.5–23 kg) re -
creational fishing gear and artificial lures rigged with
brightly colored plastic 1 inch (2.54 cm) diameter tub-
ing and two 9/0 circle hooks (O’Toole et al. 2011).
Fishing effort was calculated by timing trolling and
recording gear type and number of hooks. All capture
sites were marked with a GPS waypoint. Upon cap-
ture, the fish were evaluated visually, looking for hook
damage, other recent injuries, normal swimming, and
ability to maintain equilibrium in order to determine
whether health was adequate to support a tag.

Depending on size class (range 61−107 cm), barra -
cuda (n = 35) were tagged with either a V16 (16 ×
54 mm, 8.1 g) or V13 (13 × 36 mm, 6 g) standard
VEMCO acoustic transmitter programmed to ping
randomly between 60 and 180 s for the duration of the
battery life, ranging from 1299 d for V13 to 3650 d for
V16. Fish selected for tagging were placed into a
204.4 l Rubbermaid tote (108 × 54.3 × 45.7 cm) filled
with seawater. The anesthetic MS222 diluted to a
10 g l−1 concentration stock solution was slowly  ad ded
to the tote to induce stage 4 anesthesia (O’Toole et al.
2011, FAU IACUC 2014). Fish were deemed suffi-
ciently dosed for surgeries at the onset of slowing of
gill movement and loss of full equilibrium. Anes-
thetized fish were held in a supine position with gills
submerged while an incision was cut with a no. 10
blade carbon steel sterile disposable scalpel just off
the central mid-line between the pelvic and anal fins.
Acoustic tags disinfected with 70% isopropyl alcohol
were then surgically im planted into the body cavity.
Incisions were closed with Ethicon polydioxanone
monofilament sterile ab sorbable FS-1, 24 mm reverse
cutting needle sutures (Model PDS*II), using 2 to 3
simple interrupted sutures. Halfway through the sur-
gery, fresh seawater was added to the cooler to dilute
the anesthetic and begin the recovery process. Total
length and fork length were measured. Time of day
and length of the procedure were recorded for all as-
pects of the capture and surgery. Fish were allowed
to recover and were monitored in ambient seawater
until normal swimming patterns were observed be-
fore being released back into the study area from
which they were captured (Friedlander & Monaco

2007, O’Toole et al. 2011). Small fish were recovered
in a floating mesh pen (4 × 6 foot [122 × 183 cm],
2.5 cm mesh size) to isolate them from predators,
while fish too large for the pen (and less at risk for
predation) were lowered over the side of the boat and
held facing into the current until they were strong
enough to swim normally. No more than 4 fish from a
given capture site were tagged on a single tagging
trip to ensure adequate distribution of tagged animals
throughout the array and across habitat types and to
avoid tag collisions. All capture and tagging methods
were approved under IACUC no. 2013-0031 (Univer-
sity of Massachusetts Am herst). All work within the
monument was ap proved by NPS under study no.
BUIS-00058 and individual research collection permit
nos. BUIS-2013-SCI_0003 and BUIS-2014-SCI-0006.

Data management, filtering, and analyses

Acoustic data were filtered in R version 3.2.2 (R Core
Team 2015) and VUE (VEMCO) software to remove
false detections caused by tag collisions and interfer-
ence from background noise. Biologically unlikely
movement patterns that would indicate the death of a
tagged fish or another event that would invalidate
data from that transmitter were also removed. Any fish
that recorded more than 3 consecutive weeks of trans-
missions at a single receiver was presumed to have
died or shed its tag in the vicinity of that receiver.

For all analyses, the same dataset was used, span-
ning from July 2014 to July 2015, providing a full
year of data after the last fish in this study was tag -
ged. We calculated the time between each detection,
and removed any detections that occurred less than
55 s apart. The nominal delay in transmission was set
to vary randomly between 60 and 180 s. We allowed
detections that strayed 5 s or less in order not to false -
ly remove de tections that could be real and due to
clock drift or tag irregularities. Short ping rates due
to echoes or simultaneous detections were consid-
ered not to be representative of actual barracuda
location data. All analysis was conducted in R version
3.2.2 (R Core Team 2015). Once filtering was conduc -
ted and study year selected, 32 of the original 35 tag -
ged fish re mained for analysis. Additional in forma -
tion is provided in Supplement 1 at www. int-res. com/
articles/ suppl/  m562 p147 _ supp/. Supplement 1A lists
fork length, number of raw detections, number of fil-
tered detections, observed to expected detection ra -
tio, and number of days heard for each fish in cluded
in this dataset, and Supplement 1B contains a resi-
dency plot that graphs detections over time.
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Utilization density home range estimations

KUD estimates were conducted for all 32 fish present
in the dataset spanning July 2014 to July 2015. Grid
size was set to approximately 50 × 50 m, and the
smoothing parameter was set at 125 m, which corre-
sponds to the average 50% contour for receiver detec-
tion range in this array. We standardized the area over
which the utilization distribution was calculated to
 include the entire array. In order to allow the KUD to
run on acoustic telemetry data without encountering
errors due the lack of variance that occurs if all reloca-
tions were sited at the receiver station, each data point
was randomly assigned a location within the 50% cut-
off in detection range for that receiver (125 m).

A DBBMM framework differs from KUD, which
uses single point location data, by employing move-
ments between 2 locations as the data input. We cre-
ated movement matrices in which each line of data in-
dicates a movement between 2 receivers and used
this as the model input. All models were run using the
move package (Kranstauber & Smolla 2015). DBBMM
interpolates intermediate points between detections
and generates a density surface based on these. We
set the interpolation time to be 120 s, to replicate the
average ping rate, and set the location error to be
125 m, based on the average receiver detection range.

For both utilization density methods, we calculated
contour lines representing where on the density sur-
face 50% and 95% of density probabilities occurred.
We then calculated the area falling within each of
these contour lines in order to generate core and gen-
eral use area estimates, which we later used to com-
pare these 2 utilization density methods, as well as
to compare utilization density methods to network
analysis.

Network analysis

Network analysis uses different metrics to assess
the association between nodes, i.e. points in a net-
work, and edges, i.e. the connections between those
nodes. Recently, this method has begun to be used to
analyze broad-scale acoustic telemetry arrays (Ja -
coby et al. 2012a, Finn et al. 2014, Ledee et al. 2015).
We created networks of receivers for each fish, with
each node representing an individual receiver and
each edge a movement of the fish from one receiver
to another. We used the igraph package (Csárdi &
Nepusz 2006) to assign centrality to metrics for each
node in each individual fish array (Ledee et al. 2015).
We assessed centrality based on degree. This metric

represents the number of edges connected to a single
node, including self-loops, when a fish was detected
consecutive times at the same re ceiver. Centrality
degree should, therefore, be broadly comparable to
utilization density methods estimating frequency of
use. We used degree ranks to create spatially refer-
enced plots in order to visualize activity spaces for in-
dividual fish. Code, data (for one example fish), and
source files needed to generate KUD and DBBMM
utilization distributions, as well as network centrality
plots are included in Supplement 2 at www. int-res.
com/ articles/ suppl/  m562 p147 _ supp/.

Model comparisons

In addition to using utilization density to define home
range areas, we followed the methods of Ledee et al.
(2015) by using 50% contours to define core use re-
ceivers (CURs) tocompareutilizationdensityestimation
methods with network analysis. The 50% area was
used to look at core areas, since for many of the fish, the
95% areas lay outside the array, leading to greater con-
fidence in the 50% estimates for model comparison. For
network analysis, degree metrics were used to assign
CURs for each fish. Receivers were rank ordered by de-
gree value, and all receivers that fell below the 50%
were identified. Numbers of CURs were compared to
numbers of receivers that fell within the utilization den-
sity-generated 50% contour lines in order to compare
overlap between approaches. The differences to Ledee
et al. (2015) were adding the analysis using DBBMM
and eliminating comparison to minimum convex poly-
gon, which is essentially reflected in the full number of
receivers identified in the network analyses.

Normality tests indicated non-normally distributed
data. Additionally, detection data indicates move-
ments from one receiver to another, which automati-
cally violates the assumption of independence of data.
Therefore, permutation randomization tests with out
replacement were used to test for significant differ-
ences between results of the various methods. Area
estimates at both 50% and 95% contour areas were
tested against each other. CURs identified by KUD
and DBBMM were tested against CURs identified by
network analysis.

Impact of variation in detection history on activity
space estimates

Several GLMs were created to assess drivers of
home range size and centrality ranking generated by
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the comparison methods. The models examined how
home range estimates generated by each method
were influenced by fork length, as well as by mean
number of detections per week. Fish size has been
shown to be a driver of home range size (Kramer
& Chapman 1999). Mean weekly detections were
highly variable for individual great barracuda. We
included mean weekly detections as a predictor vari-
able in the model to examine to what degree the data
variations as opposed to barracuda ecology were
influencing patterns. The GLMs tested these 2 co -
variates and their interaction for each of the 3 meth-
ods. For the first 2 models (DBBMM core area and
KUD core area estimates) we used the gamma distri-
bution with a log link because the data for these
models was in the form of positive real numbers, and
for the last (network analysis CUR estimates) we
used the Poisson distribution with a log link, as the
number of CURs was in the form of count data. For all
models, the predictor variables include fish fork
length, average number of detections per week, and
the interaction be tween length and detections. Con-
ditional plots generated using the R package VisReg
were used to more closely examine the relationship
between body size and detection history within the
interaction term (Breheny & Burchett 2015).

RESULTS

Activity space estimation

Filtered detections ranged from 251 to 224 179,
with corresponding observed/expected values of 0.1
to 85.25% (Supplement 1A). While individual great
barracuda had detections on many or all receivers,
both utilization distribution methods (KUD and
DBBMM) showed steep distribution surfaces domi-
nated by relatively small activity spaces (Table 1).

The 50% home range estimates were very small for
both utilization distribution models, between 0.1 to
0.2 km2 for each method. The 95% home range areas
were much larger for both estimates and were more
variable across the 2 methods compared to 50% esti-
mates. Supplements 1C−1E contain all plots gener-
ated across all 3 methods.

KUDs showed a mean of 1.39 km2, and DBBMM
showed more than twice that, with a mean of
3.69 km2. Results from the CUR analysis for both uti-
lization density methods as well as centrality degree
network analysis showed comparable numbers for
KUD and DBBMM, but noticeably larger numbers
of core receivers as defined by network analysis
(Table 1). For these estimates, CUR generated by
KUD and DBBMM again appeared to be fairly simi-
lar, albeit slightly greater for DBBMM. However,
estimates were much larger for CUR estimates gen-
erated using network analysis.

Methods comparison

Visual comparison of plots from KUD, DBBMM,
and network analysis indicated agreement across
methods in predicting location and size of home
range territories for our study population. All meth-
ods showed broad use of the array by individuals,
with general use areas encompassing large swaths of
multiple receivers and core use areas distributed
across all habitat types that overlapped spatially with
the territories of neighboring barracuda (Fig. 3).

Results from the randomization permutation tests
validated the trends shown by the summary statistics
of utilization density and CUR comparisons (Table 2).
There was no significant difference be tween esti-
mates at the 50% utilization density, but a significant
difference was observed at 95%. Plotting observed
versus expected detection ratios against area esti-

153

                               Home range area estimates (km2)                                             Core use estimates (no. receivers)
                        KUD 50          DBBMM 50          KUD 95          DBBMM 95                CUR KUD      CUR DBBMM       CUR NA

Mean                  0.21                    0.2                    1.39                   3.69                            2.31                   3.03                   6.81
Median               0.13                   0.15                   0.94                   1.37                             1.5                       2                        7

Table 1. Summary statistics for estimation of home range and activity space of great barracuda Sphyraena barracuda. Home
range area estimates include core (50%) and general (95%) area estimates for both kernel utilization density (KUD) and dy-
namic Brownian bridge movement model (DBBMM). Core use estimates include the number of core use receivers (CURs) gen-
erated by KUD, DBBMM, and network analysis (NA). All estimates used to generate these summary statistics can be found in
Supplement 1F, and the figures used to calculate these estimates in Supplements 1C−1E at www. int-res. com/ articles/ suppl/  

m562 p147 _ supp/
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Fig. 3. Comparison between 3 different methods of estimation of activity space for 5 example great barracuda Sphyraena bar-
racuda. (A) Tag 24551, 812 detections; (B) Tag 24555, 7645 detections; (C) Tag 24554, 13 282 detections; (D) Tag 26799, 51 276
detections; (E) Tag 26800, 106 074 detections. Methods compared are kernel utilization densities (KUD), dynamic Brownian
bridge movement models (DBBMM), and network analysis (NA). Contour lines at the 50% and 95% density estimates were
plotted for KUD and DBBMM, shown in yellow (95%) and red (50%) for KUD, and red (95%) and lilac (50%) for DBBMM
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mates for both utilization distribution methods
showed a pattern of decreasing area estimates with
increasing detection histories (Fig. 4). The difference
between estimates by the 2 utilization distribution
methods, as well as the overall variability in estimated
area, both decreased with increasing de tection histo-
ries (Fig. 4). When examined more closely by plotting
KUD and DBBMM results against each other, and
then looking at the residuals for the 2 utilization dis-
tribution methods against mean detections per week,
it was apparent that as detection histories increased,
residuals decreased (Fig. 5). Therefore, as detection
histories increased, the difference in area estimates
between KUD and DBBMM de creased.

GLMs

There were variations among the 3 models regard-
ing which variables were significant but agreement as
to whether relationships between model parameters
and core use area estimates (the dependent variable)
were positive or negative (Table 2). The model with
KUD as the dependent variable showed no significant
predictor variables, in contrast to the DBBMM,
despite there being no significant difference between
these 2 methods in the randomization tests. CUR also
had a significant relationship be tween detection his-
tory strength and home range size. This model also
showed the interaction between detection history and
body size as significant, warranting closer examina-
tion of this relationship. All models showed negative
relationships for the detection history variable. As
 detection histories in creased, home range size de-
creased. Fork length showed a negative relationship
across all models, although none found this variable
significant on its own.

When plotted separately in conditional plots with
fixed detection history values, the interaction of fork
length and detections per week was positive across
all models, and significant for the CUR model
(Table 3). Detection history strength initially clouded
the relationship, but when strong detection histories
were observed, a strong positive relationship be -
tween fork length and home range size existed
(Fig. 6). This relationship was shown by the random-
ization testing to be significant just for CUR, but the
trend of a positive relationship between body size
and home range for high detection history individu-
als was shown across all models, but was hidden by
the numbers of individuals with low detection histo-
ries that did not display this relationship.

DISCUSSION

Utilization distribution methods indicated that
great barracuda within our study are predominantly
using small, overlapping territories at the detection
scale of the acoustic array. Individual fish had unique
core areas of use and they frequently returned to
these areas after not being continuously detected. Of
the 32 observed fish, 27 individuals were detected on
a large number of receivers, but the majority of their
detections occurred on a much smaller subset of
receivers. Our study revealed that great barracuda in
BIRNM display high site fidelity to small core use
areas, but periodically demonstrate broad move-
ments throughout surrounding areas.

Test                                                                               p

KUD_50:DBBMM_50                                              0.904
KUD_95:DBBMM_95                                            0.0091
KUD_CUR:DBBMM_CUR                                      0.999
KUD_CUR: NA_CUR                                              <0.001
DBBMM_CUR:NA_CUR                                        <0.001

Table 2. Significance tests between kernel utilization den-
sity (KUD) and dynamic Brownian bridge movement model
(DBBMM) for great barracuda Sphyraena barracuda at the
50th percentile (core home range), 95th percentile (general
home range), as well as between the number of core use
receivers (CURs) generated by each method. CUR tests
were conducted between KUD and DBBMM, KUD and net-
work analysis (NA), and DBBMM and NA. Significance
was determined using permutation tests without replace

ment. Significant values are highlighted in bold

Fig. 4. Core use area estimates for great barracuda Sphyra -
ena barracuda by dynamic Brownian bridge movement
models (DBBMM) and kernel utilization densities (KUD) 

plotted against observed/expected detections ratio
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Activity space estimation and method comparison

The 2 utilization distribution methods used in our
study predicted very similar values using 50% area
estimates, but showed significantly different results
at the 95% level, with DBBMM predicting values
with an average twice as high as the KUD. Compari-
son of utilization density plots and area estimates
showed that a handful of fish have 95% DBBMM

predictions many times the size of the KUD esti-
mates. Individual fish that show the highest discrep-
ancies are those with comparatively weak detection
histories and drive the divergence in 95% estimates
for the 2 methods. While functioning very similarly
when detection histories were high, DBBMM esti-
mated larger areas compared to KUD when detection
histories were low. Since DBBMM used movements
between receivers to interpolate intermediary points
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                                                    KUD                                                 DBBMM                                                          NA

Intercept                             −0.74 (±1.342)                                      −0.30 (±1.19)                                             2.44 (±0.61)***
Dets wk−1                          −0.0024 (±0.002)                               −0.0028 (±0.0013)*                                      −0.002 (±0.0007)*
FL                                      −0.0078 (±0.016)                                  −0.012 (±0.014)                                         −0.0069 (±0.0071)
Dets wk−1: FL                0.000025 (±0.00002)                           0.000027 (±0.00002)                                 0.000019 (±0.000008)*

Table 3. Outputs from 3 generalized linear models examining influence of mean weekly detection rates (dets wk−1), body size
(fork length, FL), and the interaction between these 2 terms on core use area estimates for great barracuda Sphyraena bar-
racuda generated by kernel utilization density (KUD), dynamic Brownian bridge movement model (DBBMM), and network
analysis (NA) centrality-degree ranking of core use receivers (CURs). KUD and DBBMM generate area estimates at the 50th
percentile contour of density plots, and CUR generates the number of receivers in the top 50th percentile for centrality-degree
rankings. For KUD and DBBMM, a gamma distribution with a log link was used, whereas a Poisson distribution with a log link 

was used for the CUR model. Values are estimates (± SE). Significance levels: *p < 0.05, **p < 0.005, ***p < 0.0005

Fig. 5. Kernel utilization densities (KUD) and dynamic Brownian bridge movement model (DBBMM) area estimates for great
barracuda Sphyraena barracuda, for (A) 50th and (B) 95th percentiles, plotted in maroon. Residuals of linear regressions run on
each scatterplot, plotted against mean weekly detections for (C) 50th and (D) 95th percentile area estimates are shown in red
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(Horne et al. 2007), distribution surfaces for fish with
fewer detections were based on a higher ratio of inter-
polated intermediary points versus true detections,
resulting in the apparent emphasis on large-scale
movements.

The number of CURs predicted by both utilization
distributions were similar, but network analysis using
the centrality degree metric predicted significantly
more CURs; therefore, utilization distribution meth-
ods estimated significantly smaller central activity
spaces than network analysis. Since location input
data from broad-scale acoustic telemetry for utiliza-
tion distributions, especially KUD, are limited, these
methods magnify the effect of high value receivers,
concentrating density estimates. Utilization distribu-
tion methods, while useful for showing high-use
areas, are limited in identifying less frequently used
areas, at least for a fish displaying periodic move-
ments, like great barracuda. Less commonly used
spaces may still be vital to an animal’s ecology; many
species demonstrate periodic use of vital spawning,
nursery, and feeding grounds that might be outside
their typical resident territory (Burke 1995, Meyer et
al. 2007, Nemeth et al. 2007, Starr et al. 2007, Luo et
al. 2009). Network analysis ranked receiver use met-
rics in relation to other receivers rather than interpo-
lating across intermediate areas, and thus appeared
to be quantifying receivers as more highly valuable
to an animal’s activity space than utilization densi-
ties. These findings indicate that the method of
choice can significantly impact estimates of core area
use.

Variability in detection history on ecological
interpretations

GLMs were employed to look at the effects of
strength of detection history and fish size on core
activity space estimates, and to evaluate the impact
of the interaction between these 2 predictor vari-
ables. The results were varied across the 3 models,
but trends that support a negative relationship be -
tween strength of detection history and home range
size were consistent across all models and significant
in 2 of the 3 models. When detection histories were
more consistent, predicted home range size was
smaller. Greater detection histories identified fish
whose resident activity space was captured within
the array and therefore the bulk of detections was
detected within small, frequently used territories.
The lowest mean weekly detections identified indi-
viduals for which the acoustic array only overlapped
with infrequent use areas. Thus, area estimates were
based on widely spread movements indicating a
large core use area, when in reality, the core resident
territory lay outside the array.

Fork length was not a significant predictor across
any of the models, even though previous research
indicated that body size can influence home range
size for reef associated fish species (Kramer & Chap-
man 1999). The interaction between fork length and
detection history was only significant when CURs
were defined in network analysis, where estimates
indicated that this interaction was not a driver of
home range size. However, when the regression rela-
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Fig. 6. Relationship between great barracuda Sphyraena barracuda fork length and core activity space, with detection history
segregated by weekly detection rates for each of the 3 generalized linear models. (A) Kernel utilization densities (KUD) core
area estimates; (B) dynamic Brownian bridge movement model (DBBMM) core area estimate as the dependent variable; and
(C) number of core use receivers (CURs) as the dependent variable in network analysis. The relationship is plotted separately
for 3 fixed values of detection history (detections per week, DetsWeek), with low, moderate, and high values shown in red,
green, and blue, respectively. An alternative plot, included in Supplement 1G (at www. int-res. com/ articles/ suppl/  m562 

p147_ supp/), visualizes core area plotted against detections per week
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tionships were evaluated at different mean weekly
detections, there was a positive relationship between
fork length and home range size for fish with strong
detection histories across all models. While a rela-
tionship exists for great barracuda with stronger de -
tection histories, this trend is masked in the full data-
set. Thus, detection histories in the study not only
influenced predictions of home range size, but also
the interpretation of the role of body size. These
results indicate that it is important to examine how
variation in the strength of detection histories within
a given dataset might contribute to erroneous eco-
logical conclusions.

Management implications

Estimates of movement patterns are implemented
widely to inform planning decisions regarding spa-
tial management of marine and aquatic ecosystems
(Kie et al. 2010). The methods comparison results
indicate that method choice can influence the size of
predicted core activity areas and can affect the abil-
ity of researchers to detect ecologically valuable but
infrequently used activity spaces such as spawning
grounds or feeding areas (Burke 1995, Meyer et al.
2007, Nemeth et al. 2007, Starr et al. 2007, Luo et al.
2009), and identify important ecological relation-
ships. Great barracuda in this study appeared to be
territorial and showed strong site fidelity rather than
having highly dispersed movements, indicating in -
dividuals whose core use area during the 1 yr study
period is completely encompassed within the acoustic
array and thus the MPA. Utilization density methods
(KUD and DBBMM) strongly highlight these core use
areas but miss complexities, thus leading to the risk of
failing to identify movement corridors or peripheral
areas of use. Network analysis ranks these core areas
as highly central as well, but also displays wide-
ranging forays outside core areas, identifying signifi-
cantly greater numbers of receivers as having high
centrality than shown by both utilization distribution
methods.

For the conservation of mobile predators, the effec-
tiveness of MPAs may lie in their ability to protect
specific ecologically valuable areas, rather than
attempting to cover large and unpredictable home
ranges (Hooker et al. 2011, Runge et al. 2014). Defin-
ing ecologically valuable areas is often contingent on
the ability to analyze detections generated in less fre-
quently used areas, rather than only high-use areas
(Burke 1995, Meyer et al. 2007, Nemeth et al. 2007,
Starr et al. 2007, Luo et al. 2009). The great barra -

cuda in this study appear to occupy a middle ground
between residency and mobility, given their high site
fidelity paired with larger-ranging movements, prov-
ing to be an informative species on which to compare
how these methods summarize activity space. Vari-
ability between methods will likely be highly de -
pendent on the movement patterns and life history of
the study species. The discrepancies be tween the
complexities of movement patterns shown by utiliza-
tion distributions versus network analysis demon-
strate the potential of network analysis in identifying
movement corridors and peripheral use areas (Ledee
et al. 2015). More analysis is needed to understand
the ecological function of these movement patterns,
but as MPAs become more widely applied as a con-
servation tool for mobile as well as resident species, it
is increasingly important to de velop tools to identify
ecologically vital areas rather than only closing off
areas with the highest density of use (Hooker et al.
2011).

Detection histories have the potential to greatly
influence the interpretation of results. It is intuitive
that poor detection histories may lead to spurious
results, and many studies have corrected for this by
rejecting fish whose datasets are not robust enough
for analysis (Ledee et al. 2015). There is currently no
a priori method for determining what constitutes a
sufficient detection history, something that will vary
by species, array design, and specific research ques-
tion. The relationship shown in the data between
detection histories and home range size demon-
strates the importance in determining a specific cut-
off point based on individual data prior to analysis.
Without taking detection histories into account, it
would appear that some of the fish inconsistently use
much larger areas than others. For this dataset, it
seems that the fish whose home ranges appear much
larger and infrequent are individuals whose core
home range lies outside the array. So while these ani-
mals were indeed intermittently resident and tran-
sient to the array, this interpretation indicates that
the patterns seen in our site are consistent across the
study population and not indicative of behaviorally
unique sub-groups. There was an additional impact
of variable detection histories on identifying ecologi-
cal patterns, in this case the relationship between
fish size and home range size. Failure to account for
detection histories risks misidentifying patterns as
being of ecological origin. We anticipate varied
results if the same approaches are applied to other
study species, geographic areas, and array configu-
rations, as much of the noise in telemetry data is
highly dependent on these study-specific factors.
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However, the presence of these patterns within this
study demonstrate the importance of careful analysis
regarding the impact of methodological choice and
detection history as a critical part of the process of
analysis of acoustic telemetry data.

While we are confident of the general findings, a
suite of methods are available to estimate home range
and quantify movement patterns using acoustic
telemetry data. The use of autocorrelation-adjusted
KUD analyses offers an opportunity to re duce the
weight from a series of detections in a common loca-
tion, although in a study of black bears this would
only inflate the size of the home range by 8% (Kata-
jisto & Moilanen 2006). Exploring how resampling
and other adjustments for autocorrelation influence
the home range of different species, and in relation to
the detection history, would aid in understanding the
potential applicability moving forward. Mechanistic
approaches, such as state-space models, are emerg-
ing as promising tools with which to analyze tracking
data (Alós et al. 2016). While these methods are com-
plex and computationally intense and offer promise
towards elucidating details of an animal’s ecology,
they may be prohibitive to use in some situations.
Identification of individuals with sufficient detections
for full analyses and other preliminary data explo-
rations will still require an appreciation of the detec-
tion histories. Additionally, to appropriately parame-
trize aspects of these models, some preliminary data
on species’ behavioral ecology and the detection
probability of the acoustic receivers are required
(Patterson et al. 2008, Alós et al. 2016). Brownian
bridge approaches used in this study required far
more computation time than either other method
(KUD or network analysis), but with location error of
the acoustic array, provided nearly identical results
as KUD. Network analysis provides an additional
approach that does not include as sumptions that are
automatically violated by tracking data and which is
computationally non-intense and rapid to perform.
As it does not require specifying habitat preferences,
environmental requirements, or known behaviors, it
is a useful method in analyzing the movements of an
understudied species with limited existing move-
ment data, such as great barracuda. Once prelimi-
nary assessments of movements have been identified
in these little-studied species, incorporation of these
findings into a state-space model or simulation study
would be a widely beneficial future step in continu-
ing to better understand the multi-species efficacy of
BIRNM.

While useful in identifying core use areas, utiliza-
tion distribution methods are less well suited to iden-

tifying movement corridors and peripheral use areas
from acoustic telemetry datasets. Network analysis
shows potential in filling this missing link. Sporadic
use or rapid movements through larger areas may
generate fewer detections than resident behavior,
but repeated use provides ecological information
about the movements of a mobile species that can in -
form management. Analyses that disregard patterns
based on less frequent detections ignore a vital asset
of acoustic telemetry data: the ability to use temporal
relationships in the data to tease apart drivers for
observed movements. As MPAs are created with the
conservation of mobile species in mind, it is impor-
tant to identify movement corridors among eco -
logically valuable territories. Regardless of method
choice, variability in detection histories heavily influ-
enced home range area results, and confounded the
ability to determine the influence of the ecological
parameter of fork length in this study. As tools to ana-
lyze acoustic telemetry continue to be fine-tuned, it is
important to move towards standard approaches for
linking fish movements, developing array designs,
and integrating findings into spatial management
frameworks.

Acknowledgements. This research was funded by the Uni-
versity of Massachusetts Amherst, National Park Service,
and University of Puerto Rico Sea Grant. This work would
not have been possible without the contributions of Mark
Monaco and Matt Kendall (NOAA Biogeography Branch),
Ron Hill and Jennifer Doerr (NOAA Fishery Ecology
Branch), Kristen Hart (US Geological Survey), Michael Fee-
ley and David Bryan (South Florida/Caribbean I&M Net-
work), Richard Nemeth (University of the Virgin Islands),
Greg Skomal (Massachusetts Division of Marine Fisheries),
and Bryan DeAngelis (The Nature Conservancy). We also
thank Jamie Kilgo, Elizabeth Whitcher, Tessa Code, and
Richard Berey for field assistance during tagging and for
conducting receiver downloads and maintenance with the
National Park Service in St. Croix.

LITERATURE CITED

Airame S, Dugan J, Lafferty K, Leslie H, McArdle D, Warner
R (2003) Applying ecological criteria to marine reserve
design:  a case study from the California Channel Islands.
Ecol Appl 13: 170−184

Allison GW, Lubchenco J, Carr MH (1998) Marine reserves
are necessary but not sufficient for marine conservation.
Ecol Appl 8: S79−S92

Alós J, Palmer M, Balle S, Arlinghaus R (2016) Bayesian
state-space modelling of conventional acoustic tracking
provides accurate descriptors of home range behavior
in a small-bodied coastal fish species. PLOS ONE 11: 
e0154089

Bolger DT, Newmark WD, Morrison WD, Doak DF (2008)
The need for integrative approaches to understand and
conserve migratory ungulates. Ecol Lett 11: 63−77

159
A

ut
ho

r c
op

y

https://doi.org/10.1890/1051-0761(2003)013%5b0170%3AAECTMR%5d2.0.CO%3B2
https://doi.org/10.1890/1051-0761(1998)8%5bS79%3AMRANBN%5d2.0.CO%3B2
https://doi.org/10.1371/journal.pone.0154089
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17897327&dopt=Abstract


Mar Ecol Prog Ser 562: 147–161, 2016

Breheny P, Burchett W (2015) Visreg:  visualization of regres-
sion models. R package version 2.2-0. Available at http://
CRAN.R-project.org/package=visreg (accessed June
2015)

Buler JJ, Moore FR (2011) Migrant-habitat relationships
during stopover along an ecological barrier:  extrinsic
constraints and conservation implications. J Ornithol
152: 101−112

Burke N (1995) Nocturnal foraging habitats of French and
bluestriped grunts, Haemulon flavolineatum and H. sciu-
rus, at Tobacco Caye, Belize. Environ Biol Fishes 42: 
365−374

Claudet J, Osenberg CW, Domenici P, Badalamenti F and
others (2010) Marine reserves:  Fish life history and eco-
logical traits matter. Ecol Appl 20: 830−839

Cooke SJ (2008) Biotelemetry and biologging in endan-
gered species research and animal conservation:  rele-
vance to regional, national, and IUCN Red List threat
assessments. Endang Species Res 4: 165−185

Costa BM, Tormey S, Battista TA (2012) Benthic habitats of
Buck Island Reef National Monument. Tech Memo NOS
NCCOS 142. NOAA, Silver Spring, MD

Cressey D (2011) Uncertain sanctuary. Nature 480: 166−167
Crowder L, Norse E (2008) Essential ecological insights for

marine ecosystem-based management and marine spa-
tial planning. Mar Policy 32: 772−778

Csárdi G, Nepusz T (2006) The igraph software package for
complex network research. InterJournal, Complex Sys-
tems 1695. Available at http: //igraph.org (accessed May
2015)

De Santo EM (2013) Missing marine protected area (MPA)
targets:  How the push for quantity over quality under-
mines sustainability and social justice. J Environ Manag
124: 137−146

Douvere F (2008) The importance of marine spatial planning
in advancing ecosystem-based sea use management.
Mar Policy 32: 762−771

Edgar GJ, Stuart-Smith RD, Willis TJ, Kininmonth S and oth-
ers (2014) Global conservation outcomes depend on mar-
ine protected areas with five key features. Nature 506: 
216−220

Farmer NA, Ault JS (2011) Grouper and snapper movements
and habitat use in Dry Tortugas, Florida. Mar Ecol Prog
Ser 433: 169−184

FAU IACUC (Florida Atlantic University Institutional Animal
Care and Use Committee) (2014) Guidelines for the
preparation and use of MS222 (TMS, tricaine methane-
sulfonate) for animal procedures. Available at www. fau.
edu/research/comparative-medicine/support-material-
guidelines.php                                                                       

Finn JT, Brownscombe JW, Haak CR, Cooke SJ, Cormier R,
Gagne T, Danylchuk AJ (2014) Applying network meth-
ods to acoustic telemetry data:  modeling the movements
of tropical marine fishes. Ecol Model 293: 139−149

Friedlander A, Monaco M (2007) Acoustic tracking of reef
fishes to elucidate habitat utilization patterns and resi-
dence times inside and outside marine protected areas
around the Island of St. John, USVI. Tech Memo NOS
NCCOS 63. NOAA/NOS/NCCOS/CCMA-Biogeography
Branch, Silver Spring, MD

Halpern B (2003) The impact of marine reserves:  Do
reserves work and does reserve size matter? Ecol Appl
13: 117−137

Hedger RD, Martin F, Dodson JJ, Hatin D, Caron D, Who-
riskey FG (2008) The optimized interpolation of fish posi-

tions and speeds in an array of fixed acoustic receivers.
ICES J Mar Sci 65: 1248−1259

Heupel MR, Simpfendorfer CA, Collins AB, Tyminski JP
(2006a) Residency and movement patterns of bonnet-
head sharks, Sphyrna tiburo, in a large Florida estuary.
Environ Biol Fishes 76: 47−67

Heupel M, Semmens J, Hobday A (2006b) Automated
acoustic tracking of aquatic animals:  scales, design and
deployment of listening station arrays. Mar Freshw Res
57: 1−13

Hooker SK, Cañadas A, Hyrenbach KD, Corrigan C, Polov-
ina JJ, Reeves RR (2011) Making protected area net-
works effective for marine top predators. Endang Spe-
cies Res 13: 203−218

Horne JS, Garton EO, Krone SM, Lewis JS (2007) Analyzing
animal movements using Brownian bridges. Ecology 88: 
2354−2363

Hussey NE, Kessel ST, Aarestrup K, Cooke SJ and others
(2015) Aquatic animal telemetry:  a panoramic window
into the underwater world. Science 348: 1255642

Jacoby DMP, Brooks EJ, Croft DP, Sims DW (2012a) Devel-
oping a deeper understanding of animal movements and
spatial dynamics through novel application of network
analyses. Methods Ecol Evol 3: 574−583

Jacoby DMP, Croft DP, Sims DW (2012b) Social behaviour in
sharks and rays:  analysis, patterns and implications for
conservation. Fish Fish 13: 399−417

Katajisto J, Moilanen A (2006) Kernel-based home range
method for data with irregular sampling intervals. Ecol
Model 194: 405−413

Kessel ST, Cooke SJ, Heupel MR, Hussey NE, Simpfendor-
fer CA, Vagle S, Fisk AT (2014) A review of detection
range testing in aquatic passive acoustic telemetry stud-
ies. Rev Fish Biol Fish 24: 199−218

Kie JG, Matthiopoulos J, Fieberg J, Powell RA and others
(2010) The home-range concept:  Are traditional estima-
tors still relevant with modern telemetry technology?
Philos Trans R Soc Lond B Biol Sci 365: 2221−2231

Kimirei IA, Nagelkerken I, Griffioen B, Wagner C, Mgaya
YD (2011) Ontogenetic habitat use by mangrove/
seagrass-associated coral reef fishes shows flexibility in
time and space. Estuar Coast Shelf Sci 92: 47−58

Klein CJ, Brown CJ, Halpern BS, Segan DB, McGowan J,
Beger M, Watson JEM (2015) Shortfalls in the global pro-
tected area network at representing marine biodiversity.
Sci Rep 5: 17539

Kramer DL, Chapman MR (1999) Implications of fish home
range size and relocation for marine reserve function.
Environ Biol Fishes 55: 65−79

Kranstauber B, Smolla M (2015) Move:  visualizing and ana-
lyzing animal track data. R package version 1.5.514.
Available at http: //CRAN.R-project.org/package=move
(accessed May 2015)

Ledee EJI, Heupel MR, Tobin AJ, Knip DM, Simpfendorfer
CA (2015) A comparison between traditional kernel-
based methods and network analysis:  an example from
two nearshore shark species. Anim Behav 103: 17−28

Lester SE, Halpern BS, Grorud-Colvert K, Lubchenco J and
others (2009) Biological effects within no-take marine
reserves:  a global synthesis. Mar Ecol Prog Ser 384: 33−46

Luo J, Serafy JE, Sponaugle S, Teare PB, Kieckbusch D
(2009) Movement of gray snapper Lutjanus griseus
among subtropical seagrass, mangrove, and coral reef
habitats. Mar Ecol Prog Ser 380: 255−269

McClanahan TR, Graham NAJ, Calnan JM, MacNeil MA

160
A

ut
ho

r c
op

y

http://CRAN.R-project.org/package=visreg
https://doi.org/10.1007/s10336-010-0640-7
https://doi.org/10.1007/BF00001467
https://doi.org/10.1890/08-2131.1
https://doi.org/10.3354/esr00063
https://doi.org/10.1038/480166a
https://doi.org/10.1016/j.marpol.2008.03.012
http://igraph.org
https://doi.org/10.1016/j.jenvman.2013.01.033
https://doi.org/10.1016/j.marpol.2008.03.021
https://doi.org/10.1038/nature13022
https://doi.org/10.3354/meps09198
http://www.fau.edu/research/comparative-medicine/support-material-guidelines.php
https://doi.org/10.1016/j.ecolmodel.2013.12.014
https://doi.org/10.1890/1051-0761(2003)013%5b0117%3ATIOMRD%5d2.0.CO%3B2
https://doi.org/10.1093/icesjms/fsn109
https://doi.org/10.1007/s10641-006-9007-6
https://doi.org/10.1071/MF05091
https://doi.org/10.3354/esr00322
https://doi.org/10.1890/06-0957.1
https://doi.org/10.1126/science.1255642
https://doi.org/10.1111/j.2041-210X.2012.00187.x
https://doi.org/10.1111/j.1467-2979.2011.00436.x
https://doi.org/10.1016/j.ecolmodel.2005.11.001
https://doi.org/10.1007/s11160-013-9328-4
https://doi.org/10.1098/rstb.2010.0093
https://doi.org/10.1016/j.ecss.2010.12.016
https://doi.org/10.1038/srep17539
https://doi.org/10.1023/A%3A1007481206399
http://CRAN.R-project.org/package=move
https://doi.org/10.1016/j.anbehav.2015.01.039
https://doi.org/10.3354/meps08029
https://doi.org/10.3354/meps07911
https://doi.org/10.1890/06-1450


Becker et al.: Spatial ecology of a marine predator 161

(2007) Toward pristine biomass:  reef fish recovery in
coral reef marine protected areas in Kenya. Ecol Appl 17: 
1055−1067

Meyer CG, Papastamatiou YP, Holland KN (2007) Seasonal,
diel, and tidal movements of green jobfish (Aprion
virescens, Lutjanidae) at remote Hawaiian atolls:  impli-
cations for marine protected area design. Mar Biol 151: 
2133−2143

Mumby PJ, Edwards AJ, Arias-Gonzalez JE, Lindeman KC
and others (2004) Mangroves enhance the biomass of
coral reef fish communities in the Caribbean. Nature
427: 533−536

Murawski S, Brown R, Lai H, Rago P, Hendrickson L (2000)
Large-scale closed areas as a fishery-management tool
in temperate marine systems:  the Georges Bank experi-
ence. Bull Mar Sci 66: 775−798

Murawski S, Wigley S, Fogarty M, Rago P, Mountain D
(2005) Effort distribution and catch patterns adjacent to
temperate MPAs. ICES J Mar Sci 62: 1150−1167

Nemeth RS, Blondeau J, Herzlieb S, Kadison E (2007) Spa-
tial and temporal patterns of movement and migration at
spawning aggregations of red hind, Epinephelus gutta-
tus, in the US Virgin Islands. Environ Biol Fishes 78: 
365−381

O’Toole AC, Danylchuk AJ, Goldberg TL, Suski CD, Philipp
DP, Brooks E, Cooke SJ (2011) Spatial ecology and resi-
dency patterns of adult great barracuda (Sphyraena bar-
racuda) in coastal waters of The Bahamas. Mar Biol 158: 
2227−2237

Patterson TA, Thomas L, Wilcox C, Ovaskainen O, Matthio -
poulos J (2008) State-space models of individual animal
movement. Trends Ecol Evol 23: 87−94

Pauly D, Christensen V, Guénette S, Pitcher T and others
(2002) Towards sustainability in world fisheries. Nature
418: 689−695

Pérez-Jorge S, Pereira T, Corne C, Wijtten Z and others
(2015) Can static habitat protection encompass critical
areas for highly mobile marine top predators? Insights
from coastal East Africa. PLOS ONE 10: e0133265

Pikitch E, Santora C, Babcock E, Bakun A and others (2004)

Ecosystem-based fishery management. Science 305: 
346−347

Polis GA, Anderson WB, Holt RD (1997) Toward an integra-
tion of landscape and food web ecology:  the dynamics of
spatially subsidized food webs. Annu Rev Ecol Syst 28: 
289−316

Powell RA (2000) Animal home ranges and territories and
home range estimators. In:  Boitani L, Fuller TK (eds)
Research technologies in animal ecology — controversies
and consequences. Columbia University Press, New
York, NY, p 66–110

Pressey RL, Cabeza M, Watts ME, Cowling RM, Wilson KA
(2007) Conservation planning in a changing world.
Trends Ecol Evol 22: 583−592

R Core Team (2015) R:  a language and environment for sta-
tistical computing. R Foundation for Statistical Comput-
ing, Vienna

Roberts C, Bohnsack J, Gell F, Hawkins J, Goodridge R
(2001) Effects of marine reserves on adjacent fisheries.
Science 294: 1920−1923

Runge CA, Martini TG, Possingham HP, Willis SG, Fuller RA
(2014) Conserving mobile species. Front Ecol Environ 12: 
395−402

Selby TH, Hart KM, Fujisaki I, Smith BJ and others (2016)
Can you hear me now? Range-testing a submerged pas-
sive acoustic receiver array in a Caribbean coral reef
habitat. Ecol Evol 6: 4823−4835

Spalding MI, Milam A, Fitzgerald C, Hale I (2013) Protecting
marine spaces: global targets and changing approaches.
Ocean Yearb 27:213–248

Starr RM, Sala E, Ballesteros E, Zabala M (2007) Spatial
dynamics of the Nassau grouper Epinephelus striatus in
a Caribbean atoll. Mar Ecol Prog Ser 343: 239−249

Suuronen P, Jounela P, Tschernij V (2010) Fishermen
responses on marine protected areas in the Baltic cod
fishery. Mar Policy 34: 237−243

Tallis H, Levin PS, Ruckelshaus M, Lester SE, McLeod KL,
Fluharty DL, Halpern BS (2010) The many faces of eco-
system-based management:  making the process work
today in real places. Mar Policy 34: 340−348

Editorial responsibility: Ivan Nagelkerken, 
Adelaide, South Australia, Australia

Submitted: May 27, 2016; Accepted: October 30, 2016
Proofs received from author(s): December 16, 2016

A
ut

ho
r c

op
y

https://doi.org/10.1007/s00227-007-0647-7
https://doi.org/10.1038/nature02286
https://doi.org/10.1007/s10641-006-9161-x
https://doi.org/10.1007/s00227-011-1728-1
https://doi.org/10.1016/j.tree.2007.10.009
https://doi.org/10.1038/nature01017
https://doi.org/10.1371/journal.pone.0133265
https://doi.org/10.1126/science.1098222
https://doi.org/10.1146/annurev.ecolsys.28.1.289
https://doi.org/10.1016/j.tree.2007.10.001
https://doi.org/10.1126/science.294.5548.1920
https://doi.org/10.1890/130237
https://doi.org/10.1002/ece3.2228
https://doi.org/10.1163/22116001-90000160
https://doi.org/10.3354/meps06897
https://doi.org/10.1016/j.marpol.2009.07.001
https://doi.org/10.1016/j.marpol.2009.08.003



